Spaces:
Runtime error
Runtime error
File size: 8,309 Bytes
ee1cac8 c97afbd ee1cac8 c97afbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
---
title: Repvit Sam
emoji: π
colorFrom: yellow
colorTo: yellow
sdk: gradio
sdk_version: 4.8.0
app_file: app.py
pinned: false
license: mit
---
# [RepViT-SAM: Towards Real-Time Segmenting Anything]()
Official PyTorch implementation of **RepViT-SAM**, from the following paper:
[RepViT-SAM: Towards Real-Time Segmenting Anything]().\
Ao Wang, Hui Chen, Zijia Lin, Hengjun Pu, and Guiguang Ding\
[[`arXiv`]()]
<details>
<summary>
<font size="+1">Abstract</font>
</summary>
Segment Anything Model (SAM) has shown impressive zero-shot transfer performance for various computer vision tasks recently. However, its heavy computation costs remain daunting for practical applications. MobileSAM proposes to replace the heavyweight image encoder in SAM with TinyViT by employing distillation, which results in a significant reduction in computational requirements. However, its deployment on resource-constrained mobile devices still encounters challenges due to the substantial memory and computational overhead caused by self-attention mechanisms. Recently, RepViT achieves the state-of-the-art performance and latency trade-off on mobile devices by incorporating efficient architectural designs of ViTs into CNNs. Here, to achieve real-time segmenting anything on mobile devices, following, we replace the heavyweight image encoder in SAM with RepViT model, ending up with the RepViT-SAM model. Extensive experiments show that RepViT-SAM can enjoy significantly better zero-shot transfer capability than MobileSAM, along with nearly $10\times$ faster inference speed.
</details>
<br/>
## Installation
```bash
pip install -e .
# download pretrained checkpoint
mkdir weights && cd weights
wget https://github.com/THU-MIG/RepViT/releases/download/v1.0/repvit_sam.pt
```
## Demo
Our Hugging Face demo is [here](https://huggingface.co/spaces/jameslahm/repvit-sam)
```
python app/app.py
```
## CoreML export
Please refer to [coreml_example.ipynb](./notebooks/coreml_example.ipynb)
## Latency comparisons
Comparison between RepViT-SAM and others in terms of latency. The latency (ms) is measured with the standard resolution of 1024 $\times$ 1024 on iPhone 12 and Macbook M1 Pro by Core ML Tools. OOM means out of memory.
<table class="tg">
<thead>
<tr>
<th class="tg-c3ow" rowspan="1">Platform</th>
<th class="tg-c3ow" colspan="3">Image encoder</th>
<th class="tg-c3ow" rowspan="1">Mask decoder</th>
</tr>
</thead>
<tbody>
<tr>
<td class="tg-c3ow">iPhone</td>
<td class="tg-c3ow"><b>48.9ms</b></td>
<td class="tg-c3ow">OOM</td>
<td class="tg-c3ow">OOM</td>
<td class="tg-c3ow">11.6ms</td>
</tr>
<tr>
<td class="tg-c3ow">Macbook</td>
<td class="tg-c3ow"><b>44.8ms</b></td>
<td class="tg-c3ow">482.2ms</td>
<td class="tg-c3ow">6249.5ms</td>
<td class="tg-c3ow">11.8ms</td>
</tr>
</tbody>
</table>
## Zero-shot edge detection
Comparison results on BSDS500.
<table class="tg">
<thead>
<tr>
<th class="tg-c3ow" rowspan="2">Model</th>
<th class="tg-c3ow" colspan="3">zero-shot edge detection</th>
</tr>
<tr>
<th class="tg-c3ow">ODS</th>
<th class="tg-c3ow">OIS</th>
<th class="tg-c3ow">AP</th>
</tr>
</thead>
<tbody>
<tr>
<td class="tg-c3ow">ViT-H-SAM</td>
<td class="tg-c3ow"><b>.768</b></td>
<td class="tg-c3ow"><b>.786</b></td>
<td class="tg-c3ow"><b>.794</b></td>
</tr>
<tr>
<td class="tg-c3ow">ViT-B-SAM</td>
<td class="tg-c3ow">.743</td>
<td class="tg-c3ow">.764</td>
<td class="tg-c3ow">.726</td>
</tr>
<tr>
<td class="tg-c3ow">MobileSAM</td>
<td class="tg-c3ow">.756</td>
<td class="tg-c3ow">.768</td>
<td class="tg-c3ow">.746</td>
</tr>
<tr>
<td class="tg-c3ow">RepViT-SAM</td>
<td class="tg-c3ow"><ins>.764</ins></td>
<td class="tg-c3ow"><ins>.786</ins></td>
<td class="tg-c3ow"><ins>.773</ins></td>
</tr>
</tbody>
</table>
## Zero-shot instance segmentation and SegInW
Comparison results on COCO and SegInW.
<table class="tg">
<thead>
<tr>
<th class="tg-c3ow" rowspan="2">Model</th>
<th class="tg-c3ow" colspan="4">zero-shot instance segmentation</th>
<th class="tg-c3ow">SegInW</th>
</tr>
<tr>
<th class="tg-c3ow">AP</th>
<th class="tg-c3ow">$AP^{S}$</th>
<th class="tg-c3ow">$AP^{M}$</th>
<th class="tg-c3ow">$AP^{L}$</th>
<th class="tg-c3ow">Mean AP</th>
</tr>
</thead>
<tbody>
<tr>
<td class="tg-c3ow">ViT-H-SAM</td>
<td class="tg-c3ow"><b>46.8</b></td>
<td class="tg-c3ow"><b>31.8</b></td>
<td class="tg-c3ow"><b>51.0</b></td>
<td class="tg-c3ow"><b>63.6</b></td>
<td class="tg-c3ow"><b>48.7</b></td>
</tr>
<tr>
<td class="tg-c3ow">ViT-B-SAM</td>
<td class="tg-c3ow">42.5</td>
<td class="tg-c3ow"><ins>29.8</ins></td>
<td class="tg-c3ow">47.0</td>
<td class="tg-c3ow">56.8</td>
<td class="tg-c3ow">44.8</td>
</tr>
<tr>
<td class="tg-c3ow">MobileSAM</td>
<td class="tg-c3ow">42.7</td>
<td class="tg-c3ow">27.0</td>
<td class="tg-c3ow">46.5</td>
<td class="tg-c3ow">61.1</td>
<td class="tg-c3ow">43.9</td>
</tr>
<tr>
<td class="tg-c3ow">RepViT-SAM</td>
<td class="tg-c3ow"><ins>44.4</ins></td>
<td class="tg-c3ow">29.1</td>
<td class="tg-c3ow"><ins>48.6</ins></td>
<td class="tg-c3ow"><ins>61.4</ins></td>
<td class="tg-c3ow"><ins>46.1</ins></td>
</tr>
</tbody>
</table>
## Zero-shot video object/instance segmentation
Comparison results on DAVIS 2017 and UVO.
<table class="tg">
<thead>
<tr>
<th class="tg-c3ow" rowspan="2">Model</th>
<th class="tg-c3ow" colspan="3">z.s. VOS</th>
<th class="tg-c3ow">z.s. VIS</th>
</tr>
<tr>
<th class="tg-c3ow">$\mathcal{J\&F}$</th>
<th class="tg-c3ow">$\mathcal{J}$</th>
<th class="tg-c3ow">$\mathcal{F}$</th>
<th class="tg-c3ow">AR100</th>
</tr>
</thead>
<tbody>
<tr>
<td class="tg-c3ow">ViT-H-SAM</td>
<td class="tg-c3ow"><b>77.4</b></td>
<td class="tg-c3ow"><b>74.6</b></td>
<td class="tg-c3ow"><b>80.2</b></td>
<td class="tg-c3ow"><b>28.8</b></td>
</tr>
<tr>
<td class="tg-c3ow">ViT-B-SAM</td>
<td class="tg-c3ow">71.3</td>
<td class="tg-c3ow">68.5</td>
<td class="tg-c3ow">74.1</td>
<td class="tg-c3ow">19.1</td>
</tr>
<tr>
<td class="tg-c3ow">MobileSAM</td>
<td class="tg-c3ow">71.1</td>
<td class="tg-c3ow">68.6</td>
<td class="tg-c3ow">73.6</td>
<td class="tg-c3ow">22.7</td>
</tr>
<tr>
<td class="tg-c3ow">RepViT-SAM</td>
<td class="tg-c3ow"><ins>73.5</ins></td>
<td class="tg-c3ow"><ins>71.0</ins></td>
<td class="tg-c3ow"><ins>76.1</ins></td>
<td class="tg-c3ow"><ins>25.3</ins></td>
</tr>
</tbody>
</table>
## Zero-shot salient object segmentation
Comparison results on DUTS.
## Zero-shot anomaly detection
Comparison results on MVTec.
<table class="tg">
<thead>
<tr>
<th class="tg-c3ow" rowspan="2">Model</th>
<th class="tg-c3ow">z.s. s.o.s.</th>
<th class="tg-c3ow">z.s. a.d.</th>
</tr>
<tr>
<th class="tg-c3ow">$\mathcal{M}$ $\downarrow$</th>
<th class="tg-c3ow">$\mathcal{F}_{p}$</th>
</tr>
</thead>
<tbody>
<tr>
<td class="tg-c3ow">ViT-H-SAM</td>
<td class="tg-c3ow"><b>0.046</b></td>
<td class="tg-c3ow"><ins>37.65</ins></td>
</tr>
<tr>
<td class="tg-c3ow">ViT-B-SAM</td>
<td class="tg-c3ow">0.121</td>
<td class="tg-c3ow">36.62</td>
</tr>
<tr>
<td class="tg-c3ow">MobileSAM</td>
<td class="tg-c3ow">0.147</td>
<td class="tg-c3ow">36.44</td>
</tr>
<tr>
<td class="tg-c3ow">RepViT-SAM</td>
<td class="tg-c3ow"><ins>0.066</ins></td>
<td class="tg-c3ow"><b>37.96</b></td>
</tr>
</tbody>
</table>
## Acknowledgement
The code base is partly built with [SAM](https://github.com/facebookresearch/segment-anything) and [MobileSAM](https://github.com/ChaoningZhang/MobileSAM).
Thanks for the great implementations!
## Citation
If our code or models help your work, please cite our paper:
```BibTeX
@misc{wang2023repvit,
title={RepViT: Revisiting Mobile CNN From ViT Perspective},
author={Ao Wang and Hui Chen and Zijia Lin and Hengjun Pu and Guiguang Ding},
year={2023},
eprint={2307.09283},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
``` |