jannisborn commited on
Commit
4300235
·
unverified ·
1 Parent(s): a323836
model_cards/article.md CHANGED
@@ -1,76 +1,12 @@
1
- # Model documentation & parameters
2
 
3
- **Algorithm Version**: Which model version to use.
4
 
5
- **Property goals**: One or multiple properties that will be optimized.
6
 
7
- **Protein target**: An AAS of a protein target used for conditioning. Leave blank unless you use `affinity` as a `property goal`.
8
 
9
- **Decoding temperature**: The temperature parameter in the SMILES/SELFIES decoder. Higher values lead to more explorative choices, smaller values culminate in mode collapse.
10
 
11
- **Maximal sequence length**: The maximal number of SMILES tokens in the generated molecule.
12
 
13
- **Number of samples**: How many samples should be generated (between 1 and 50).
14
-
15
- **Limit**: Hypercube limits in the latent space.
16
-
17
- **Number of steps**: Number of steps for a GP optmization round. The longer the slower. Has to be at least `Number of initial points`.
18
-
19
- **Number of initial points**: Number of initial points evaluated. The longer the slower.
20
-
21
- **Number of optimization rounds**: Maximum number of optimization rounds.
22
-
23
- **Sampling variance**: Variance of the Gaussian noise applied during sampling from the optimal point.
24
-
25
- **Samples for evaluation**: Number of samples averaged for each minimization function evaluation.
26
-
27
- **Max. sampling steps**: Maximum number of sampling steps in an optmization round.
28
-
29
- **Seed**: The random seed used for initialization.
30
-
31
-
32
-
33
- # Model card -- PaccMannGP
34
-
35
- **Model Details**: [PaccMann<sup>GP</sup>](https://github.com/PaccMann/paccmann_gp) is a language-based Variational Autoencoder that is coupled with a GaussianProcess for controlled sampling. This model systematically explores the latent space of a trained molecular VAE.
36
-
37
- **Developers**: Jannis Born, Matteo Manica and colleagues from IBM Research.
38
-
39
- **Distributors**: Original authors' code wrapped and distributed by GT4SD Team (2023) from IBM Research.
40
-
41
- **Model date**: Published in 2022.
42
-
43
- **Model version**: A molecular VAE trained on 1.5M molecules from ChEMBL.
44
-
45
- **Model type**: A language-based molecular generative model that can be explored with Gaussian Processes to generate molecules with desired properties.
46
-
47
- **Information about training algorithms, parameters, fairness constraints or other applied approaches, and features**:
48
- Described in the [original paper](https://pubs.acs.org/doi/10.1021/acs.jcim.1c00889).
49
-
50
- **Paper or other resource for more information**:
51
- [Active Site Sequence Representations of Human Kinases Outperform Full Sequence Representations for Affinity Prediction and Inhibitor Generation: 3D Effects in a 1D Model (2022; *Journal of Chemical Information & Modeling*)](https://pubs.acs.org/doi/10.1021/acs.jcim.1c00889).
52
-
53
- **License**: MIT
54
-
55
- **Where to send questions or comments about the model**: Open an issue on [GT4SD repository](https://github.com/GT4SD/gt4sd-core).
56
-
57
- **Intended Use. Use cases that were envisioned during development**: Chemical research, in particular drug discovery.
58
-
59
- **Primary intended uses/users**: Researchers and computational chemists using the model for model comparison or research exploration purposes.
60
-
61
- **Out-of-scope use cases**: Production-level inference, producing molecules with harmful properties.
62
-
63
- **Factors**: Not applicable.
64
-
65
- **Metrics**: High reward on generating molecules with desired properties.
66
-
67
- **Datasets**: ChEMBL.
68
-
69
- **Ethical Considerations**: Unclear, please consult with original authors in case of questions.
70
-
71
- **Caveats and Recommendations**: Unclear, please consult with original authors in case of questions.
72
-
73
- Model card prototype inspired by [Mitchell et al. (2019)](https://dl.acm.org/doi/abs/10.1145/3287560.3287596?casa_token=XD4eHiE2cRUAAAAA:NL11gMa1hGPOUKTAbtXnbVQBDBbjxwcjGECF_i-WC_3g1aBgU1Hbz_f2b4kI_m1in-w__1ztGeHnwHs)
74
 
75
  ## Citation
76
  If you use this webservice, please cite:
 
1
+ # Model documentation
2
 
 
3
 
4
+ **SMILES**:
5
 
 
6
 
7
+ ell lines in rows and genes in columns
8
 
 
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  ## Citation
12
  If you use this webservice, please cite:
model_cards/description.md CHANGED
@@ -1,3 +1,3 @@
1
  <img align="right" src="https://repository-images.githubusercontent.com/219031433/3729c600-fcdc-11e9-9cdf-60c4a2b41700" alt="logo" width="120" >
2
 
3
- PaccMann is a
 
1
  <img align="right" src="https://repository-images.githubusercontent.com/219031433/3729c600-fcdc-11e9-9cdf-60c4a2b41700" alt="logo" width="120" >
2
 
3
+ PaccMann is a webservice for anticancer compound sensitivity prediction. For details on usage, please see the [PaccMann paper](https://academic.oup.com/nar/article/48/W1/W502/5836770) in *Nucleic Acid Research*.