Spaces:
Runtime error
Runtime error
jasonwuyl92
commited on
Commit
·
2ab45c8
0
Parent(s):
initial commit after cleanup
Browse files- .gitattributes +36 -0
- .gitignore +6 -0
- README.md +14 -0
- app.py +69 -0
- app_old.py +38 -0
- get_embeddings.ipynb +1047 -0
- misc.py +24 -0
- requirements.txt +13 -0
- run.py +51 -0
- streamlit_app.py +39 -0
- utils.py +170 -0
- vector_db.py +37 -0
.gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.pq filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.DS_Store
|
2 |
+
.idea/
|
3 |
+
.python-version
|
4 |
+
.ipynb_checkpoints/
|
5 |
+
__pycache__
|
6 |
+
flagged
|
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Image Search Playground
|
3 |
+
emoji: 📈
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: blue
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.30.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
python_version: 3.10.0
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from functools import partial
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
import utils
|
8 |
+
import vector_db
|
9 |
+
from utils import get_image_embedding, \
|
10 |
+
get_image_path, model_names, download_images, generate_and_save_embeddings, get_metadata_path, url_to_image
|
11 |
+
|
12 |
+
NUM_OUTPUTS = 4
|
13 |
+
|
14 |
+
|
15 |
+
def search(input_img, model_name):
|
16 |
+
query_embedding = get_image_embedding(model_name, input_img).tolist()
|
17 |
+
top_results = vector_db.query_embeddings_db(query_embedding=query_embedding,
|
18 |
+
dataset_name=utils.cur_dataset, model_name=model_name)
|
19 |
+
print (top_results)
|
20 |
+
return [utils.url_to_image(hit['metadata']['mainphotourl']) for hit in top_results['matches']]
|
21 |
+
|
22 |
+
|
23 |
+
def read_tsv_temporary_file(temp_file_wrapper):
|
24 |
+
dataset_name = os.path.splitext(os.path.basename(temp_file_wrapper.name))[0]
|
25 |
+
utils.set_cur_dataset(dataset_name)
|
26 |
+
df = pd.read_csv(temp_file_wrapper.name, sep='\t') # Read the TSV content into a pandas DataFrame
|
27 |
+
df.to_csv(os.path.join(get_metadata_path(), dataset_name + '.tsv'), sep='\t', index=False)
|
28 |
+
print('start downloading')
|
29 |
+
download_images(df, get_image_path())
|
30 |
+
generate_and_save_embeddings()
|
31 |
+
utils.refresh_all_datasets()
|
32 |
+
utils.set_cur_dataset(dataset_name)
|
33 |
+
return gr.update(choices=utils.all_datasets, value=dataset_name)
|
34 |
+
|
35 |
+
|
36 |
+
def update_dataset_dropdown():
|
37 |
+
utils.refresh_all_datasets()
|
38 |
+
utils.set_cur_dataset(utils.all_datasets[0])
|
39 |
+
return gr.update(choices=utils.all_datasets, value=utils.cur_dataset)
|
40 |
+
|
41 |
+
|
42 |
+
def gen_image_blocks(num_outputs):
|
43 |
+
with gr.Row():
|
44 |
+
row = [gr.outputs.Image(label=model_name, type='filepath') for i in range(int(num_outputs))]
|
45 |
+
return row
|
46 |
+
|
47 |
+
|
48 |
+
with gr.Blocks() as demo:
|
49 |
+
galleries = dict()
|
50 |
+
with gr.Row():
|
51 |
+
with gr.Column(scale=1):
|
52 |
+
file_upload = gr.File(label="Upload TSV File", file_types=[".tsv"])
|
53 |
+
image_input = gr.inputs.Image(type="pil", label="Input Image")
|
54 |
+
dataset_dropdown = gr.Dropdown(label='Datasets', choices=utils.all_datasets)
|
55 |
+
b1 = gr.Button("Find Similar Images")
|
56 |
+
b2 = gr.Button("Refresh Datasets")
|
57 |
+
|
58 |
+
dataset_dropdown.select(utils.set_cur_dataset, inputs=dataset_dropdown)
|
59 |
+
file_upload.upload(read_tsv_temporary_file, inputs=file_upload, outputs=dataset_dropdown)
|
60 |
+
b2.click(update_dataset_dropdown, outputs=dataset_dropdown)
|
61 |
+
with gr.Column(scale=3):
|
62 |
+
for model_name in model_names:
|
63 |
+
galleries[model_name] = gen_image_blocks(NUM_OUTPUTS)
|
64 |
+
for model_name in model_names:
|
65 |
+
b1.click(partial(search, model_name=model_name), inputs=[image_input],
|
66 |
+
outputs=galleries[model_name])
|
67 |
+
b2.click(utils.refresh_all_datasets, outputs=dataset_dropdown)
|
68 |
+
|
69 |
+
demo.launch()
|
app_old.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import gradio as gr
|
3 |
+
from sentence_transformers import util as st_util
|
4 |
+
import pandas as pd
|
5 |
+
import os
|
6 |
+
from utils import load_models, get_image_embedding, img_folder, model_name_to_ids, data_path, model_names
|
7 |
+
|
8 |
+
|
9 |
+
def search(input_img, num_outputs):
|
10 |
+
results = []
|
11 |
+
for model_name in model_names:
|
12 |
+
query_embedding = get_image_embedding(model_name, input_img)
|
13 |
+
top_results = st_util.semantic_search(query_embedding,
|
14 |
+
np.vstack(list(corpus_embeddings[model_name + '-embedding'])),
|
15 |
+
top_k=int(num_outputs))[0]
|
16 |
+
results.append([os.path.join(img_folder,
|
17 |
+
corpus_embeddings.iloc[hit['corpus_id']]['name']) for hit in top_results])
|
18 |
+
return results
|
19 |
+
|
20 |
+
|
21 |
+
load_models()
|
22 |
+
corpus_embeddings = pd.read_parquet(
|
23 |
+
os.path.join(data_path, 'metadata/patagonia_losGatos_embeddings.pq'))
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
# Create the Gradio interface
|
28 |
+
iface = gr.Interface(
|
29 |
+
fn=search,
|
30 |
+
inputs=[gr.Image(type="pil"),
|
31 |
+
gr.inputs.Number(label="Number of results", default=3)],
|
32 |
+
outputs=[gr.Gallery(label=model_name, type='filepath') for model_name in model_names],
|
33 |
+
title="Search Similar Images",
|
34 |
+
description="Upload an image and find similar images",
|
35 |
+
)
|
36 |
+
|
37 |
+
# Launch the Gradio interface
|
38 |
+
iface.launch(debug=True)
|
get_embeddings.ipynb
ADDED
@@ -0,0 +1,1047 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 28,
|
6 |
+
"metadata": {
|
7 |
+
"tags": []
|
8 |
+
},
|
9 |
+
"outputs": [
|
10 |
+
{
|
11 |
+
"ename": "ImportError",
|
12 |
+
"evalue": "cannot import name 'data_path' from 'utils' (/Users/yonglinwu/dev/image-search-playground/utils.py)",
|
13 |
+
"output_type": "error",
|
14 |
+
"traceback": [
|
15 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
16 |
+
"\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)",
|
17 |
+
"Cell \u001b[0;32mIn[28], line 9\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mtorch\u001b[39;00m\n\u001b[1;32m 7\u001b[0m torch\u001b[39m.\u001b[39mset_printoptions(precision\u001b[39m=\u001b[39m\u001b[39m10\u001b[39m)\n\u001b[0;32m----> 9\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mutils\u001b[39;00m \u001b[39mimport\u001b[39;00m get_image_embeddings, model_name_to_ids, load_models, model_dict, data_path\n\u001b[1;32m 11\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mwarnings\u001b[39;00m\n\u001b[1;32m 12\u001b[0m warnings\u001b[39m.\u001b[39msimplefilter(action\u001b[39m=\u001b[39m\u001b[39m'\u001b[39m\u001b[39mignore\u001b[39m\u001b[39m'\u001b[39m, category\u001b[39m=\u001b[39m\u001b[39mFutureWarning\u001b[39;00m)\n",
|
18 |
+
"\u001b[0;31mImportError\u001b[0m: cannot import name 'data_path' from 'utils' (/Users/yonglinwu/dev/image-search-playground/utils.py)"
|
19 |
+
]
|
20 |
+
}
|
21 |
+
],
|
22 |
+
"source": [
|
23 |
+
"from sentence_transformers import SentenceTransformer, util\n",
|
24 |
+
"from PIL import Image\n",
|
25 |
+
"import pandas as pd\n",
|
26 |
+
"import os\n",
|
27 |
+
"import numpy as np\n",
|
28 |
+
"import torch\n",
|
29 |
+
"torch.set_printoptions(precision=10)\n",
|
30 |
+
"\n",
|
31 |
+
"from utils import get_image_embeddings, model_name_to_ids, load_models, model_dict, data_path\n",
|
32 |
+
"\n",
|
33 |
+
"import warnings\n",
|
34 |
+
"warnings.simplefilter(action='ignore', category=FutureWarning)\n",
|
35 |
+
"\n",
|
36 |
+
"%load_ext autoreload\n",
|
37 |
+
"%autoreload 2\n"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"cell_type": "code",
|
42 |
+
"execution_count": null,
|
43 |
+
"metadata": {},
|
44 |
+
"outputs": [],
|
45 |
+
"source": []
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"cell_type": "code",
|
49 |
+
"execution_count": 3,
|
50 |
+
"metadata": {
|
51 |
+
"tags": []
|
52 |
+
},
|
53 |
+
"outputs": [],
|
54 |
+
"source": [
|
55 |
+
"patagonia_df = pd.read_csv(data_path + 'metadata/patagonia_losGatos.tsv', sep='\\t')"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"execution_count": 4,
|
61 |
+
"metadata": {
|
62 |
+
"tags": []
|
63 |
+
},
|
64 |
+
"outputs": [
|
65 |
+
{
|
66 |
+
"data": {
|
67 |
+
"text/html": [
|
68 |
+
"<div>\n",
|
69 |
+
"<style scoped>\n",
|
70 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
71 |
+
" vertical-align: middle;\n",
|
72 |
+
" }\n",
|
73 |
+
"\n",
|
74 |
+
" .dataframe tbody tr th {\n",
|
75 |
+
" vertical-align: top;\n",
|
76 |
+
" }\n",
|
77 |
+
"\n",
|
78 |
+
" .dataframe thead th {\n",
|
79 |
+
" text-align: right;\n",
|
80 |
+
" }\n",
|
81 |
+
"</style>\n",
|
82 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
83 |
+
" <thead>\n",
|
84 |
+
" <tr style=\"text-align: right;\">\n",
|
85 |
+
" <th></th>\n",
|
86 |
+
" <th>brand</th>\n",
|
87 |
+
" <th>title</th>\n",
|
88 |
+
" <th>product_url</th>\n",
|
89 |
+
" <th>price</th>\n",
|
90 |
+
" <th>description</th>\n",
|
91 |
+
" <th>size</th>\n",
|
92 |
+
" <th>category</th>\n",
|
93 |
+
" <th>colors</th>\n",
|
94 |
+
" <th>Poshmark</th>\n",
|
95 |
+
" <th>Unnamed: 9</th>\n",
|
96 |
+
" <th>...</th>\n",
|
97 |
+
" <th>Unnamed: 38</th>\n",
|
98 |
+
" <th>Unnamed: 39</th>\n",
|
99 |
+
" <th>Unnamed: 40</th>\n",
|
100 |
+
" <th>Unnamed: 41</th>\n",
|
101 |
+
" <th>Unnamed: 42</th>\n",
|
102 |
+
" <th>Unnamed: 43</th>\n",
|
103 |
+
" <th>Unnamed: 44</th>\n",
|
104 |
+
" <th>Unnamed: 45</th>\n",
|
105 |
+
" <th>Unnamed: 46</th>\n",
|
106 |
+
" <th>Unnamed: 47</th>\n",
|
107 |
+
" </tr>\n",
|
108 |
+
" </thead>\n",
|
109 |
+
" <tbody>\n",
|
110 |
+
" <tr>\n",
|
111 |
+
" <th>0</th>\n",
|
112 |
+
" <td>Patagonia</td>\n",
|
113 |
+
" <td>Patagonia Women's Los Gatos Fleece 1/4-Zip Smo...</td>\n",
|
114 |
+
" <td>https://poshmark.com/listing/63d4821f2fbf1afe8...</td>\n",
|
115 |
+
" <td>$36.00</td>\n",
|
116 |
+
" <td>A soft, warm and versatile quarter-zip pullove...</td>\n",
|
117 |
+
" <td>M</td>\n",
|
118 |
+
" <td>Tops</td>\n",
|
119 |
+
" <td>[{'name': 'Gray', 'rgb': '#929292', 'message_i...</td>\n",
|
120 |
+
" <td>Poshmark</td>\n",
|
121 |
+
" <td>False</td>\n",
|
122 |
+
" <td>...</td>\n",
|
123 |
+
" <td>NaN</td>\n",
|
124 |
+
" <td>NaN</td>\n",
|
125 |
+
" <td>NaN</td>\n",
|
126 |
+
" <td>NaN</td>\n",
|
127 |
+
" <td>NaN</td>\n",
|
128 |
+
" <td>NaN</td>\n",
|
129 |
+
" <td>NaN</td>\n",
|
130 |
+
" <td>NaN</td>\n",
|
131 |
+
" <td>NaN</td>\n",
|
132 |
+
" <td>NaN</td>\n",
|
133 |
+
" </tr>\n",
|
134 |
+
" <tr>\n",
|
135 |
+
" <th>1</th>\n",
|
136 |
+
" <td>Patagonia</td>\n",
|
137 |
+
" <td>Patagonia Los Gatos 1/4 Zip Pullover M Beech B...</td>\n",
|
138 |
+
" <td>https://poshmark.com/listing/63fcd7709f212bd48...</td>\n",
|
139 |
+
" <td>$59.00</td>\n",
|
140 |
+
" <td>High pile, quarter zip pulllover\\nMeasurements...</td>\n",
|
141 |
+
" <td>M</td>\n",
|
142 |
+
" <td>Tops</td>\n",
|
143 |
+
" <td>[{'name': 'Brown', 'rgb': '#663509', 'message_...</td>\n",
|
144 |
+
" <td>Poshmark</td>\n",
|
145 |
+
" <td>False</td>\n",
|
146 |
+
" <td>...</td>\n",
|
147 |
+
" <td>NaN</td>\n",
|
148 |
+
" <td>NaN</td>\n",
|
149 |
+
" <td>NaN</td>\n",
|
150 |
+
" <td>NaN</td>\n",
|
151 |
+
" <td>NaN</td>\n",
|
152 |
+
" <td>NaN</td>\n",
|
153 |
+
" <td>NaN</td>\n",
|
154 |
+
" <td>NaN</td>\n",
|
155 |
+
" <td>NaN</td>\n",
|
156 |
+
" <td>NaN</td>\n",
|
157 |
+
" </tr>\n",
|
158 |
+
" <tr>\n",
|
159 |
+
" <th>2</th>\n",
|
160 |
+
" <td>Patagonia</td>\n",
|
161 |
+
" <td>PATAGONIA Women's Los Gatos Fleece 1/4-Zip Pul...</td>\n",
|
162 |
+
" <td>https://poshmark.com/listing/642b9bbcfed51f812...</td>\n",
|
163 |
+
" <td>$59.00</td>\n",
|
164 |
+
" <td>PATAGONIA Women's Los Gatos Fleece 1/4-Zip Pul...</td>\n",
|
165 |
+
" <td>S</td>\n",
|
166 |
+
" <td>Tops</td>\n",
|
167 |
+
" <td>[{'name': 'White', 'rgb': '#FFFFFF', 'message_...</td>\n",
|
168 |
+
" <td>Poshmark</td>\n",
|
169 |
+
" <td>False</td>\n",
|
170 |
+
" <td>...</td>\n",
|
171 |
+
" <td>NaN</td>\n",
|
172 |
+
" <td>NaN</td>\n",
|
173 |
+
" <td>NaN</td>\n",
|
174 |
+
" <td>NaN</td>\n",
|
175 |
+
" <td>NaN</td>\n",
|
176 |
+
" <td>NaN</td>\n",
|
177 |
+
" <td>NaN</td>\n",
|
178 |
+
" <td>NaN</td>\n",
|
179 |
+
" <td>NaN</td>\n",
|
180 |
+
" <td>NaN</td>\n",
|
181 |
+
" </tr>\n",
|
182 |
+
" <tr>\n",
|
183 |
+
" <th>3</th>\n",
|
184 |
+
" <td>Patagonia</td>\n",
|
185 |
+
" <td>Girl’s Patagonia Los Gatos Fleece 1/4 Zip XS</td>\n",
|
186 |
+
" <td>https://poshmark.com/listing/63f4f459c5df6c7f8...</td>\n",
|
187 |
+
" <td>$30.00</td>\n",
|
188 |
+
" <td>Girl’s Patagonia Los Gatos 1/4 Zip Fleece\\n\\n-...</td>\n",
|
189 |
+
" <td>XSG</td>\n",
|
190 |
+
" <td>Other</td>\n",
|
191 |
+
" <td>[{'name': 'Tan', 'rgb': '#d1b48e', 'message_id...</td>\n",
|
192 |
+
" <td>Poshmark</td>\n",
|
193 |
+
" <td>False</td>\n",
|
194 |
+
" <td>...</td>\n",
|
195 |
+
" <td>NaN</td>\n",
|
196 |
+
" <td>NaN</td>\n",
|
197 |
+
" <td>NaN</td>\n",
|
198 |
+
" <td>NaN</td>\n",
|
199 |
+
" <td>NaN</td>\n",
|
200 |
+
" <td>NaN</td>\n",
|
201 |
+
" <td>NaN</td>\n",
|
202 |
+
" <td>NaN</td>\n",
|
203 |
+
" <td>NaN</td>\n",
|
204 |
+
" <td>NaN</td>\n",
|
205 |
+
" </tr>\n",
|
206 |
+
" <tr>\n",
|
207 |
+
" <th>4</th>\n",
|
208 |
+
" <td>Patagonia</td>\n",
|
209 |
+
" <td>Patagonia Los Gatos Quarter Zip Grey</td>\n",
|
210 |
+
" <td>https://poshmark.com/listing/622cc43d3a0db900b...</td>\n",
|
211 |
+
" <td>$59.00</td>\n",
|
212 |
+
" <td>Patagonia Los Gatos Quarter Zip Grey \\nWomen’s...</td>\n",
|
213 |
+
" <td>M</td>\n",
|
214 |
+
" <td>Tops</td>\n",
|
215 |
+
" <td>[{'name': 'Gray', 'rgb': '#929292', 'message_i...</td>\n",
|
216 |
+
" <td>Poshmark</td>\n",
|
217 |
+
" <td>False</td>\n",
|
218 |
+
" <td>...</td>\n",
|
219 |
+
" <td>NaN</td>\n",
|
220 |
+
" <td>NaN</td>\n",
|
221 |
+
" <td>NaN</td>\n",
|
222 |
+
" <td>NaN</td>\n",
|
223 |
+
" <td>NaN</td>\n",
|
224 |
+
" <td>NaN</td>\n",
|
225 |
+
" <td>NaN</td>\n",
|
226 |
+
" <td>NaN</td>\n",
|
227 |
+
" <td>NaN</td>\n",
|
228 |
+
" <td>NaN</td>\n",
|
229 |
+
" </tr>\n",
|
230 |
+
" </tbody>\n",
|
231 |
+
"</table>\n",
|
232 |
+
"<p>5 rows × 48 columns</p>\n",
|
233 |
+
"</div>"
|
234 |
+
],
|
235 |
+
"text/plain": [
|
236 |
+
" brand title \\\n",
|
237 |
+
"0 Patagonia Patagonia Women's Los Gatos Fleece 1/4-Zip Smo... \n",
|
238 |
+
"1 Patagonia Patagonia Los Gatos 1/4 Zip Pullover M Beech B... \n",
|
239 |
+
"2 Patagonia PATAGONIA Women's Los Gatos Fleece 1/4-Zip Pul... \n",
|
240 |
+
"3 Patagonia Girl’s Patagonia Los Gatos Fleece 1/4 Zip XS \n",
|
241 |
+
"4 Patagonia Patagonia Los Gatos Quarter Zip Grey \n",
|
242 |
+
"\n",
|
243 |
+
" product_url price \\\n",
|
244 |
+
"0 https://poshmark.com/listing/63d4821f2fbf1afe8... $36.00 \n",
|
245 |
+
"1 https://poshmark.com/listing/63fcd7709f212bd48... $59.00 \n",
|
246 |
+
"2 https://poshmark.com/listing/642b9bbcfed51f812... $59.00 \n",
|
247 |
+
"3 https://poshmark.com/listing/63f4f459c5df6c7f8... $30.00 \n",
|
248 |
+
"4 https://poshmark.com/listing/622cc43d3a0db900b... $59.00 \n",
|
249 |
+
"\n",
|
250 |
+
" description size category \\\n",
|
251 |
+
"0 A soft, warm and versatile quarter-zip pullove... M Tops \n",
|
252 |
+
"1 High pile, quarter zip pulllover\\nMeasurements... M Tops \n",
|
253 |
+
"2 PATAGONIA Women's Los Gatos Fleece 1/4-Zip Pul... S Tops \n",
|
254 |
+
"3 Girl’s Patagonia Los Gatos 1/4 Zip Fleece\\n\\n-... XSG Other \n",
|
255 |
+
"4 Patagonia Los Gatos Quarter Zip Grey \\nWomen’s... M Tops \n",
|
256 |
+
"\n",
|
257 |
+
" colors Poshmark Unnamed: 9 \\\n",
|
258 |
+
"0 [{'name': 'Gray', 'rgb': '#929292', 'message_i... Poshmark False \n",
|
259 |
+
"1 [{'name': 'Brown', 'rgb': '#663509', 'message_... Poshmark False \n",
|
260 |
+
"2 [{'name': 'White', 'rgb': '#FFFFFF', 'message_... Poshmark False \n",
|
261 |
+
"3 [{'name': 'Tan', 'rgb': '#d1b48e', 'message_id... Poshmark False \n",
|
262 |
+
"4 [{'name': 'Gray', 'rgb': '#929292', 'message_i... Poshmark False \n",
|
263 |
+
"\n",
|
264 |
+
" ... Unnamed: 38 Unnamed: 39 Unnamed: 40 Unnamed: 41 Unnamed: 42 \\\n",
|
265 |
+
"0 ... NaN NaN NaN NaN NaN \n",
|
266 |
+
"1 ... NaN NaN NaN NaN NaN \n",
|
267 |
+
"2 ... NaN NaN NaN NaN NaN \n",
|
268 |
+
"3 ... NaN NaN NaN NaN NaN \n",
|
269 |
+
"4 ... NaN NaN NaN NaN NaN \n",
|
270 |
+
"\n",
|
271 |
+
" Unnamed: 43 Unnamed: 44 Unnamed: 45 Unnamed: 46 Unnamed: 47 \n",
|
272 |
+
"0 NaN NaN NaN NaN NaN \n",
|
273 |
+
"1 NaN NaN NaN NaN NaN \n",
|
274 |
+
"2 NaN NaN NaN NaN NaN \n",
|
275 |
+
"3 NaN NaN NaN NaN NaN \n",
|
276 |
+
"4 NaN NaN NaN NaN NaN \n",
|
277 |
+
"\n",
|
278 |
+
"[5 rows x 48 columns]"
|
279 |
+
]
|
280 |
+
},
|
281 |
+
"execution_count": 4,
|
282 |
+
"metadata": {},
|
283 |
+
"output_type": "execute_result"
|
284 |
+
}
|
285 |
+
],
|
286 |
+
"source": [
|
287 |
+
"patagonia_df.head()"
|
288 |
+
]
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"cell_type": "code",
|
292 |
+
"execution_count": null,
|
293 |
+
"metadata": {},
|
294 |
+
"outputs": [],
|
295 |
+
"source": [
|
296 |
+
"#download_images(patagonia_df, data_path)"
|
297 |
+
]
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"cell_type": "code",
|
301 |
+
"execution_count": 56,
|
302 |
+
"metadata": {
|
303 |
+
"tags": []
|
304 |
+
},
|
305 |
+
"outputs": [],
|
306 |
+
"source": [
|
307 |
+
"load_models()"
|
308 |
+
]
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"cell_type": "code",
|
312 |
+
"execution_count": 54,
|
313 |
+
"metadata": {
|
314 |
+
"tags": []
|
315 |
+
},
|
316 |
+
"outputs": [],
|
317 |
+
"source": [
|
318 |
+
"def generate_embeddings():\n",
|
319 |
+
" embeddings_df = pd.DataFrame()\n",
|
320 |
+
"\n",
|
321 |
+
" # Get image embeddings\n",
|
322 |
+
" with torch.no_grad():\n",
|
323 |
+
" for fp in os.listdir(data_path + 'images/'):\n",
|
324 |
+
" if fp.endswith('.jpg'):\n",
|
325 |
+
" new_row = {'name': fp}\n",
|
326 |
+
" for model_name in model_name_to_ids.keys():\n",
|
327 |
+
" new_row[f'{model_name}-embedding'] = get_image_embeddings(model_name, Image.open(data_path + 'images/' + fp))\n",
|
328 |
+
" embeddings_df = embeddings_df.append(new_row, ignore_index=True)\n",
|
329 |
+
" return embeddings_df"
|
330 |
+
]
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"cell_type": "code",
|
334 |
+
"execution_count": 26,
|
335 |
+
"metadata": {
|
336 |
+
"tags": []
|
337 |
+
},
|
338 |
+
"outputs": [],
|
339 |
+
"source": [
|
340 |
+
"fp = os.listdir(data_path + 'images/')[0]"
|
341 |
+
]
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"cell_type": "code",
|
345 |
+
"execution_count": 28,
|
346 |
+
"metadata": {
|
347 |
+
"tags": []
|
348 |
+
},
|
349 |
+
"outputs": [],
|
350 |
+
"source": [
|
351 |
+
"model_name = 'fashion'"
|
352 |
+
]
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"cell_type": "code",
|
356 |
+
"execution_count": 29,
|
357 |
+
"metadata": {
|
358 |
+
"tags": []
|
359 |
+
},
|
360 |
+
"outputs": [],
|
361 |
+
"source": [
|
362 |
+
"new_row = {'name': fp, f'{model_name}-embedding': get_image_embeddings(model_name, Image.open(data_path + 'images/' + fp))}\n",
|
363 |
+
" "
|
364 |
+
]
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"cell_type": "code",
|
368 |
+
"execution_count": 57,
|
369 |
+
"metadata": {
|
370 |
+
"tags": []
|
371 |
+
},
|
372 |
+
"outputs": [],
|
373 |
+
"source": [
|
374 |
+
"embeddings_df = generate_embeddings()"
|
375 |
+
]
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"cell_type": "code",
|
379 |
+
"execution_count": 58,
|
380 |
+
"metadata": {
|
381 |
+
"tags": []
|
382 |
+
},
|
383 |
+
"outputs": [
|
384 |
+
{
|
385 |
+
"data": {
|
386 |
+
"text/html": [
|
387 |
+
"<div>\n",
|
388 |
+
"<style scoped>\n",
|
389 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
390 |
+
" vertical-align: middle;\n",
|
391 |
+
" }\n",
|
392 |
+
"\n",
|
393 |
+
" .dataframe tbody tr th {\n",
|
394 |
+
" vertical-align: top;\n",
|
395 |
+
" }\n",
|
396 |
+
"\n",
|
397 |
+
" .dataframe thead th {\n",
|
398 |
+
" text-align: right;\n",
|
399 |
+
" }\n",
|
400 |
+
"</style>\n",
|
401 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
402 |
+
" <thead>\n",
|
403 |
+
" <tr style=\"text-align: right;\">\n",
|
404 |
+
" <th></th>\n",
|
405 |
+
" <th>name</th>\n",
|
406 |
+
" <th>sentence-transformer-clip-ViT-L-14-embedding</th>\n",
|
407 |
+
" <th>fashion-embedding</th>\n",
|
408 |
+
" <th>openai-clip-embedding</th>\n",
|
409 |
+
" </tr>\n",
|
410 |
+
" </thead>\n",
|
411 |
+
" <tbody>\n",
|
412 |
+
" <tr>\n",
|
413 |
+
" <th>0</th>\n",
|
414 |
+
" <td>Women's Under Armour Hustle Fleece Hoodie pull...</td>\n",
|
415 |
+
" <td>[1.0734258, 0.99022365, 0.32032806, 0.2895219,...</td>\n",
|
416 |
+
" <td>[0.23177437, -1.9268938, 0.273342, -0.02474568...</td>\n",
|
417 |
+
" <td>[-0.32902592, -0.09434131, 0.3055967, 0.229937...</td>\n",
|
418 |
+
" </tr>\n",
|
419 |
+
" <tr>\n",
|
420 |
+
" <th>1</th>\n",
|
421 |
+
" <td>Patagonia Los Gatos Fleece Grey Pullover.jpg</td>\n",
|
422 |
+
" <td>[0.6227796, 0.026531212, 0.45240527, -0.488214...</td>\n",
|
423 |
+
" <td>[0.38133767, -1.3040155, 1.1697398, -0.3085520...</td>\n",
|
424 |
+
" <td>[-0.1695469, 0.5067289, 0.31120676, -0.0083701...</td>\n",
|
425 |
+
" </tr>\n",
|
426 |
+
" <tr>\n",
|
427 |
+
" <th>2</th>\n",
|
428 |
+
" <td>REI Women's Down With It Quilted Hooded Parka ...</td>\n",
|
429 |
+
" <td>[0.8497103, 1.2925782, -0.21685322, 0.24116844...</td>\n",
|
430 |
+
" <td>[-0.30043703, -1.3144073, -0.33848628, 0.24008...</td>\n",
|
431 |
+
" <td>[-0.24841668, 0.4876942, 0.39810008, -0.141552...</td>\n",
|
432 |
+
" </tr>\n",
|
433 |
+
" <tr>\n",
|
434 |
+
" <th>3</th>\n",
|
435 |
+
" <td>Chanel Haute Couture Navy Blue Dress Semi Shee...</td>\n",
|
436 |
+
" <td>[0.536018, 0.60787296, -0.2751825, 1.0325747, ...</td>\n",
|
437 |
+
" <td>[-0.101031125, 0.033914, -0.44531134, -0.64656...</td>\n",
|
438 |
+
" <td>[-0.08328074, 0.19443086, 0.14361368, 0.259305...</td>\n",
|
439 |
+
" </tr>\n",
|
440 |
+
" <tr>\n",
|
441 |
+
" <th>4</th>\n",
|
442 |
+
" <td>Patagonia Women’s S Los Gatos Quarter-Zip Flee...</td>\n",
|
443 |
+
" <td>[0.79398394, 1.3899276, -0.21383175, 0.0109823...</td>\n",
|
444 |
+
" <td>[0.60070944, -1.1051046, 1.0572466, 0.47092092...</td>\n",
|
445 |
+
" <td>[-0.27894062, -0.09589732, 0.5556799, -0.13458...</td>\n",
|
446 |
+
" </tr>\n",
|
447 |
+
" <tr>\n",
|
448 |
+
" <th>...</th>\n",
|
449 |
+
" <td>...</td>\n",
|
450 |
+
" <td>...</td>\n",
|
451 |
+
" <td>...</td>\n",
|
452 |
+
" <td>...</td>\n",
|
453 |
+
" </tr>\n",
|
454 |
+
" <tr>\n",
|
455 |
+
" <th>326</th>\n",
|
456 |
+
" <td>Women's REI Elements Jacket Size M.jpg</td>\n",
|
457 |
+
" <td>[0.6310029, 0.9942212, 0.009293936, 0.7862729,...</td>\n",
|
458 |
+
" <td>[0.19858713, -1.8665266, -0.3323754, 0.0465058...</td>\n",
|
459 |
+
" <td>[-0.0952643, 0.8016211, 0.08129032, 0.15187423...</td>\n",
|
460 |
+
" </tr>\n",
|
461 |
+
" <tr>\n",
|
462 |
+
" <th>327</th>\n",
|
463 |
+
" <td>CHANEL Black cotton bodycon tank dress with zi...</td>\n",
|
464 |
+
" <td>[1.0761135, 0.18927886, -0.007131472, 0.625682...</td>\n",
|
465 |
+
" <td>[0.07516122, -0.1886161, 0.1334078, -0.2829321...</td>\n",
|
466 |
+
" <td>[-0.12297699, 0.026368856, 0.04415588, 0.26031...</td>\n",
|
467 |
+
" </tr>\n",
|
468 |
+
" <tr>\n",
|
469 |
+
" <th>328</th>\n",
|
470 |
+
" <td>Reformation X Veda Women's Bad Leather Jacket ...</td>\n",
|
471 |
+
" <td>[0.79690784, 1.2895226, 0.22802149, -0.2736021...</td>\n",
|
472 |
+
" <td>[-0.12224964, -0.38734418, 0.35824925, 0.95855...</td>\n",
|
473 |
+
" <td>[0.6507246, 0.27751687, 0.36114892, -0.0831387...</td>\n",
|
474 |
+
" </tr>\n",
|
475 |
+
" <tr>\n",
|
476 |
+
" <th>329</th>\n",
|
477 |
+
" <td>DISNEY HER UNIVERSE LILO AND STICH Rainbow Qua...</td>\n",
|
478 |
+
" <td>[1.1617887, 0.19193622, 0.046035454, 0.4334900...</td>\n",
|
479 |
+
" <td>[-0.20762922, 0.1754938, -0.7334341, -0.106492...</td>\n",
|
480 |
+
" <td>[-0.31946087, 0.19534132, 0.37351555, -0.09741...</td>\n",
|
481 |
+
" </tr>\n",
|
482 |
+
" <tr>\n",
|
483 |
+
" <th>330</th>\n",
|
484 |
+
" <td>PATAGONIA Nano Puff Jacket Zip Primaloft Insul...</td>\n",
|
485 |
+
" <td>[0.2912089, 0.72192264, -0.01620815, 0.0022971...</td>\n",
|
486 |
+
" <td>[0.0026952028, -1.6660439, 0.03839147, -0.2164...</td>\n",
|
487 |
+
" <td>[0.12799336, 0.75828236, 0.10943861, -0.036647...</td>\n",
|
488 |
+
" </tr>\n",
|
489 |
+
" </tbody>\n",
|
490 |
+
"</table>\n",
|
491 |
+
"<p>331 rows × 4 columns</p>\n",
|
492 |
+
"</div>"
|
493 |
+
],
|
494 |
+
"text/plain": [
|
495 |
+
" name \\\n",
|
496 |
+
"0 Women's Under Armour Hustle Fleece Hoodie pull... \n",
|
497 |
+
"1 Patagonia Los Gatos Fleece Grey Pullover.jpg \n",
|
498 |
+
"2 REI Women's Down With It Quilted Hooded Parka ... \n",
|
499 |
+
"3 Chanel Haute Couture Navy Blue Dress Semi Shee... \n",
|
500 |
+
"4 Patagonia Women’s S Los Gatos Quarter-Zip Flee... \n",
|
501 |
+
".. ... \n",
|
502 |
+
"326 Women's REI Elements Jacket Size M.jpg \n",
|
503 |
+
"327 CHANEL Black cotton bodycon tank dress with zi... \n",
|
504 |
+
"328 Reformation X Veda Women's Bad Leather Jacket ... \n",
|
505 |
+
"329 DISNEY HER UNIVERSE LILO AND STICH Rainbow Qua... \n",
|
506 |
+
"330 PATAGONIA Nano Puff Jacket Zip Primaloft Insul... \n",
|
507 |
+
"\n",
|
508 |
+
" sentence-transformer-clip-ViT-L-14-embedding \\\n",
|
509 |
+
"0 [1.0734258, 0.99022365, 0.32032806, 0.2895219,... \n",
|
510 |
+
"1 [0.6227796, 0.026531212, 0.45240527, -0.488214... \n",
|
511 |
+
"2 [0.8497103, 1.2925782, -0.21685322, 0.24116844... \n",
|
512 |
+
"3 [0.536018, 0.60787296, -0.2751825, 1.0325747, ... \n",
|
513 |
+
"4 [0.79398394, 1.3899276, -0.21383175, 0.0109823... \n",
|
514 |
+
".. ... \n",
|
515 |
+
"326 [0.6310029, 0.9942212, 0.009293936, 0.7862729,... \n",
|
516 |
+
"327 [1.0761135, 0.18927886, -0.007131472, 0.625682... \n",
|
517 |
+
"328 [0.79690784, 1.2895226, 0.22802149, -0.2736021... \n",
|
518 |
+
"329 [1.1617887, 0.19193622, 0.046035454, 0.4334900... \n",
|
519 |
+
"330 [0.2912089, 0.72192264, -0.01620815, 0.0022971... \n",
|
520 |
+
"\n",
|
521 |
+
" fashion-embedding \\\n",
|
522 |
+
"0 [0.23177437, -1.9268938, 0.273342, -0.02474568... \n",
|
523 |
+
"1 [0.38133767, -1.3040155, 1.1697398, -0.3085520... \n",
|
524 |
+
"2 [-0.30043703, -1.3144073, -0.33848628, 0.24008... \n",
|
525 |
+
"3 [-0.101031125, 0.033914, -0.44531134, -0.64656... \n",
|
526 |
+
"4 [0.60070944, -1.1051046, 1.0572466, 0.47092092... \n",
|
527 |
+
".. ... \n",
|
528 |
+
"326 [0.19858713, -1.8665266, -0.3323754, 0.0465058... \n",
|
529 |
+
"327 [0.07516122, -0.1886161, 0.1334078, -0.2829321... \n",
|
530 |
+
"328 [-0.12224964, -0.38734418, 0.35824925, 0.95855... \n",
|
531 |
+
"329 [-0.20762922, 0.1754938, -0.7334341, -0.106492... \n",
|
532 |
+
"330 [0.0026952028, -1.6660439, 0.03839147, -0.2164... \n",
|
533 |
+
"\n",
|
534 |
+
" openai-clip-embedding \n",
|
535 |
+
"0 [-0.32902592, -0.09434131, 0.3055967, 0.229937... \n",
|
536 |
+
"1 [-0.1695469, 0.5067289, 0.31120676, -0.0083701... \n",
|
537 |
+
"2 [-0.24841668, 0.4876942, 0.39810008, -0.141552... \n",
|
538 |
+
"3 [-0.08328074, 0.19443086, 0.14361368, 0.259305... \n",
|
539 |
+
"4 [-0.27894062, -0.09589732, 0.5556799, -0.13458... \n",
|
540 |
+
".. ... \n",
|
541 |
+
"326 [-0.0952643, 0.8016211, 0.08129032, 0.15187423... \n",
|
542 |
+
"327 [-0.12297699, 0.026368856, 0.04415588, 0.26031... \n",
|
543 |
+
"328 [0.6507246, 0.27751687, 0.36114892, -0.0831387... \n",
|
544 |
+
"329 [-0.31946087, 0.19534132, 0.37351555, -0.09741... \n",
|
545 |
+
"330 [0.12799336, 0.75828236, 0.10943861, -0.036647... \n",
|
546 |
+
"\n",
|
547 |
+
"[331 rows x 4 columns]"
|
548 |
+
]
|
549 |
+
},
|
550 |
+
"execution_count": 58,
|
551 |
+
"metadata": {},
|
552 |
+
"output_type": "execute_result"
|
553 |
+
}
|
554 |
+
],
|
555 |
+
"source": [
|
556 |
+
"embeddings_df"
|
557 |
+
]
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"cell_type": "code",
|
561 |
+
"execution_count": 65,
|
562 |
+
"metadata": {
|
563 |
+
"tags": []
|
564 |
+
},
|
565 |
+
"outputs": [],
|
566 |
+
"source": [
|
567 |
+
"embeddings_path = os.path.join(data_path, 'metadata/patagonia_losGatos_embeddings.pq')\n",
|
568 |
+
"embeddings_df.to_parquet(embeddings_path)"
|
569 |
+
]
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"cell_type": "code",
|
573 |
+
"execution_count": 66,
|
574 |
+
"metadata": {
|
575 |
+
"tags": []
|
576 |
+
},
|
577 |
+
"outputs": [],
|
578 |
+
"source": [
|
579 |
+
"embeddings_df = pd.read_parquet(embeddings_path)"
|
580 |
+
]
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"cell_type": "code",
|
584 |
+
"execution_count": 67,
|
585 |
+
"metadata": {
|
586 |
+
"tags": []
|
587 |
+
},
|
588 |
+
"outputs": [],
|
589 |
+
"source": [
|
590 |
+
"for i, row in embeddings_df.iterrows():\n",
|
591 |
+
" if '\\n' in row['name']:\n",
|
592 |
+
" print(row['name'])\n",
|
593 |
+
" embeddings_df = embeddings_df.drop(i)"
|
594 |
+
]
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"cell_type": "code",
|
598 |
+
"execution_count": 68,
|
599 |
+
"metadata": {
|
600 |
+
"tags": []
|
601 |
+
},
|
602 |
+
"outputs": [
|
603 |
+
{
|
604 |
+
"data": {
|
605 |
+
"text/html": [
|
606 |
+
"<div>\n",
|
607 |
+
"<style scoped>\n",
|
608 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
609 |
+
" vertical-align: middle;\n",
|
610 |
+
" }\n",
|
611 |
+
"\n",
|
612 |
+
" .dataframe tbody tr th {\n",
|
613 |
+
" vertical-align: top;\n",
|
614 |
+
" }\n",
|
615 |
+
"\n",
|
616 |
+
" .dataframe thead th {\n",
|
617 |
+
" text-align: right;\n",
|
618 |
+
" }\n",
|
619 |
+
"</style>\n",
|
620 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
621 |
+
" <thead>\n",
|
622 |
+
" <tr style=\"text-align: right;\">\n",
|
623 |
+
" <th></th>\n",
|
624 |
+
" <th>name</th>\n",
|
625 |
+
" <th>sentence-transformer-clip-ViT-L-14-embedding</th>\n",
|
626 |
+
" <th>fashion-embedding</th>\n",
|
627 |
+
" <th>openai-clip-embedding</th>\n",
|
628 |
+
" </tr>\n",
|
629 |
+
" </thead>\n",
|
630 |
+
" <tbody>\n",
|
631 |
+
" <tr>\n",
|
632 |
+
" <th>0</th>\n",
|
633 |
+
" <td>Women's Under Armour Hustle Fleece Hoodie pull...</td>\n",
|
634 |
+
" <td>[1.0734258, 0.99022365, 0.32032806, 0.2895219,...</td>\n",
|
635 |
+
" <td>[0.23177437, -1.9268938, 0.273342, -0.02474568...</td>\n",
|
636 |
+
" <td>[-0.32902592, -0.09434131, 0.3055967, 0.229937...</td>\n",
|
637 |
+
" </tr>\n",
|
638 |
+
" <tr>\n",
|
639 |
+
" <th>1</th>\n",
|
640 |
+
" <td>Patagonia Los Gatos Fleece Grey Pullover.jpg</td>\n",
|
641 |
+
" <td>[0.6227796, 0.026531212, 0.45240527, -0.488214...</td>\n",
|
642 |
+
" <td>[0.38133767, -1.3040155, 1.1697398, -0.3085520...</td>\n",
|
643 |
+
" <td>[-0.1695469, 0.5067289, 0.31120676, -0.0083701...</td>\n",
|
644 |
+
" </tr>\n",
|
645 |
+
" <tr>\n",
|
646 |
+
" <th>2</th>\n",
|
647 |
+
" <td>REI Women's Down With It Quilted Hooded Parka ...</td>\n",
|
648 |
+
" <td>[0.8497103, 1.2925782, -0.21685322, 0.24116844...</td>\n",
|
649 |
+
" <td>[-0.30043703, -1.3144073, -0.33848628, 0.24008...</td>\n",
|
650 |
+
" <td>[-0.24841668, 0.4876942, 0.39810008, -0.141552...</td>\n",
|
651 |
+
" </tr>\n",
|
652 |
+
" <tr>\n",
|
653 |
+
" <th>3</th>\n",
|
654 |
+
" <td>Chanel Haute Couture Navy Blue Dress Semi Shee...</td>\n",
|
655 |
+
" <td>[0.536018, 0.60787296, -0.2751825, 1.0325747, ...</td>\n",
|
656 |
+
" <td>[-0.101031125, 0.033914, -0.44531134, -0.64656...</td>\n",
|
657 |
+
" <td>[-0.08328074, 0.19443086, 0.14361368, 0.259305...</td>\n",
|
658 |
+
" </tr>\n",
|
659 |
+
" <tr>\n",
|
660 |
+
" <th>4</th>\n",
|
661 |
+
" <td>Patagonia Women’s S Los Gatos Quarter-Zip Flee...</td>\n",
|
662 |
+
" <td>[0.79398394, 1.3899276, -0.21383175, 0.0109823...</td>\n",
|
663 |
+
" <td>[0.60070944, -1.1051046, 1.0572466, 0.47092092...</td>\n",
|
664 |
+
" <td>[-0.27894062, -0.09589732, 0.5556799, -0.13458...</td>\n",
|
665 |
+
" </tr>\n",
|
666 |
+
" <tr>\n",
|
667 |
+
" <th>...</th>\n",
|
668 |
+
" <td>...</td>\n",
|
669 |
+
" <td>...</td>\n",
|
670 |
+
" <td>...</td>\n",
|
671 |
+
" <td>...</td>\n",
|
672 |
+
" </tr>\n",
|
673 |
+
" <tr>\n",
|
674 |
+
" <th>326</th>\n",
|
675 |
+
" <td>Women's REI Elements Jacket Size M.jpg</td>\n",
|
676 |
+
" <td>[0.6310029, 0.9942212, 0.009293936, 0.7862729,...</td>\n",
|
677 |
+
" <td>[0.19858713, -1.8665266, -0.3323754, 0.0465058...</td>\n",
|
678 |
+
" <td>[-0.0952643, 0.8016211, 0.08129032, 0.15187423...</td>\n",
|
679 |
+
" </tr>\n",
|
680 |
+
" <tr>\n",
|
681 |
+
" <th>327</th>\n",
|
682 |
+
" <td>CHANEL Black cotton bodycon tank dress with zi...</td>\n",
|
683 |
+
" <td>[1.0761135, 0.18927886, -0.007131472, 0.625682...</td>\n",
|
684 |
+
" <td>[0.07516122, -0.1886161, 0.1334078, -0.2829321...</td>\n",
|
685 |
+
" <td>[-0.12297699, 0.026368856, 0.04415588, 0.26031...</td>\n",
|
686 |
+
" </tr>\n",
|
687 |
+
" <tr>\n",
|
688 |
+
" <th>328</th>\n",
|
689 |
+
" <td>Reformation X Veda Women's Bad Leather Jacket ...</td>\n",
|
690 |
+
" <td>[0.79690784, 1.2895226, 0.22802149, -0.2736021...</td>\n",
|
691 |
+
" <td>[-0.12224964, -0.38734418, 0.35824925, 0.95855...</td>\n",
|
692 |
+
" <td>[0.6507246, 0.27751687, 0.36114892, -0.0831387...</td>\n",
|
693 |
+
" </tr>\n",
|
694 |
+
" <tr>\n",
|
695 |
+
" <th>329</th>\n",
|
696 |
+
" <td>DISNEY HER UNIVERSE LILO AND STICH Rainbow Qua...</td>\n",
|
697 |
+
" <td>[1.1617887, 0.19193622, 0.046035454, 0.4334900...</td>\n",
|
698 |
+
" <td>[-0.20762922, 0.1754938, -0.7334341, -0.106492...</td>\n",
|
699 |
+
" <td>[-0.31946087, 0.19534132, 0.37351555, -0.09741...</td>\n",
|
700 |
+
" </tr>\n",
|
701 |
+
" <tr>\n",
|
702 |
+
" <th>330</th>\n",
|
703 |
+
" <td>PATAGONIA Nano Puff Jacket Zip Primaloft Insul...</td>\n",
|
704 |
+
" <td>[0.2912089, 0.72192264, -0.01620815, 0.0022971...</td>\n",
|
705 |
+
" <td>[0.0026952028, -1.6660439, 0.03839147, -0.2164...</td>\n",
|
706 |
+
" <td>[0.12799336, 0.75828236, 0.10943861, -0.036647...</td>\n",
|
707 |
+
" </tr>\n",
|
708 |
+
" </tbody>\n",
|
709 |
+
"</table>\n",
|
710 |
+
"<p>331 rows × 4 columns</p>\n",
|
711 |
+
"</div>"
|
712 |
+
],
|
713 |
+
"text/plain": [
|
714 |
+
" name \\\n",
|
715 |
+
"0 Women's Under Armour Hustle Fleece Hoodie pull... \n",
|
716 |
+
"1 Patagonia Los Gatos Fleece Grey Pullover.jpg \n",
|
717 |
+
"2 REI Women's Down With It Quilted Hooded Parka ... \n",
|
718 |
+
"3 Chanel Haute Couture Navy Blue Dress Semi Shee... \n",
|
719 |
+
"4 Patagonia Women’s S Los Gatos Quarter-Zip Flee... \n",
|
720 |
+
".. ... \n",
|
721 |
+
"326 Women's REI Elements Jacket Size M.jpg \n",
|
722 |
+
"327 CHANEL Black cotton bodycon tank dress with zi... \n",
|
723 |
+
"328 Reformation X Veda Women's Bad Leather Jacket ... \n",
|
724 |
+
"329 DISNEY HER UNIVERSE LILO AND STICH Rainbow Qua... \n",
|
725 |
+
"330 PATAGONIA Nano Puff Jacket Zip Primaloft Insul... \n",
|
726 |
+
"\n",
|
727 |
+
" sentence-transformer-clip-ViT-L-14-embedding \\\n",
|
728 |
+
"0 [1.0734258, 0.99022365, 0.32032806, 0.2895219,... \n",
|
729 |
+
"1 [0.6227796, 0.026531212, 0.45240527, -0.488214... \n",
|
730 |
+
"2 [0.8497103, 1.2925782, -0.21685322, 0.24116844... \n",
|
731 |
+
"3 [0.536018, 0.60787296, -0.2751825, 1.0325747, ... \n",
|
732 |
+
"4 [0.79398394, 1.3899276, -0.21383175, 0.0109823... \n",
|
733 |
+
".. ... \n",
|
734 |
+
"326 [0.6310029, 0.9942212, 0.009293936, 0.7862729,... \n",
|
735 |
+
"327 [1.0761135, 0.18927886, -0.007131472, 0.625682... \n",
|
736 |
+
"328 [0.79690784, 1.2895226, 0.22802149, -0.2736021... \n",
|
737 |
+
"329 [1.1617887, 0.19193622, 0.046035454, 0.4334900... \n",
|
738 |
+
"330 [0.2912089, 0.72192264, -0.01620815, 0.0022971... \n",
|
739 |
+
"\n",
|
740 |
+
" fashion-embedding \\\n",
|
741 |
+
"0 [0.23177437, -1.9268938, 0.273342, -0.02474568... \n",
|
742 |
+
"1 [0.38133767, -1.3040155, 1.1697398, -0.3085520... \n",
|
743 |
+
"2 [-0.30043703, -1.3144073, -0.33848628, 0.24008... \n",
|
744 |
+
"3 [-0.101031125, 0.033914, -0.44531134, -0.64656... \n",
|
745 |
+
"4 [0.60070944, -1.1051046, 1.0572466, 0.47092092... \n",
|
746 |
+
".. ... \n",
|
747 |
+
"326 [0.19858713, -1.8665266, -0.3323754, 0.0465058... \n",
|
748 |
+
"327 [0.07516122, -0.1886161, 0.1334078, -0.2829321... \n",
|
749 |
+
"328 [-0.12224964, -0.38734418, 0.35824925, 0.95855... \n",
|
750 |
+
"329 [-0.20762922, 0.1754938, -0.7334341, -0.106492... \n",
|
751 |
+
"330 [0.0026952028, -1.6660439, 0.03839147, -0.2164... \n",
|
752 |
+
"\n",
|
753 |
+
" openai-clip-embedding \n",
|
754 |
+
"0 [-0.32902592, -0.09434131, 0.3055967, 0.229937... \n",
|
755 |
+
"1 [-0.1695469, 0.5067289, 0.31120676, -0.0083701... \n",
|
756 |
+
"2 [-0.24841668, 0.4876942, 0.39810008, -0.141552... \n",
|
757 |
+
"3 [-0.08328074, 0.19443086, 0.14361368, 0.259305... \n",
|
758 |
+
"4 [-0.27894062, -0.09589732, 0.5556799, -0.13458... \n",
|
759 |
+
".. ... \n",
|
760 |
+
"326 [-0.0952643, 0.8016211, 0.08129032, 0.15187423... \n",
|
761 |
+
"327 [-0.12297699, 0.026368856, 0.04415588, 0.26031... \n",
|
762 |
+
"328 [0.6507246, 0.27751687, 0.36114892, -0.0831387... \n",
|
763 |
+
"329 [-0.31946087, 0.19534132, 0.37351555, -0.09741... \n",
|
764 |
+
"330 [0.12799336, 0.75828236, 0.10943861, -0.036647... \n",
|
765 |
+
"\n",
|
766 |
+
"[331 rows x 4 columns]"
|
767 |
+
]
|
768 |
+
},
|
769 |
+
"execution_count": 68,
|
770 |
+
"metadata": {},
|
771 |
+
"output_type": "execute_result"
|
772 |
+
}
|
773 |
+
],
|
774 |
+
"source": [
|
775 |
+
"embeddings_df"
|
776 |
+
]
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"cell_type": "code",
|
780 |
+
"execution_count": 8,
|
781 |
+
"metadata": {},
|
782 |
+
"outputs": [],
|
783 |
+
"source": [
|
784 |
+
"import os\n",
|
785 |
+
"\n",
|
786 |
+
"for fp in os.listdir(data_path + 'images/'):\n",
|
787 |
+
" if '?' in fp:\n",
|
788 |
+
" print(fp)"
|
789 |
+
]
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"cell_type": "code",
|
793 |
+
"execution_count": 7,
|
794 |
+
"metadata": {
|
795 |
+
"tags": []
|
796 |
+
},
|
797 |
+
"outputs": [
|
798 |
+
{
|
799 |
+
"data": {
|
800 |
+
"text/plain": [
|
801 |
+
"2"
|
802 |
+
]
|
803 |
+
},
|
804 |
+
"execution_count": 7,
|
805 |
+
"metadata": {},
|
806 |
+
"output_type": "execute_result"
|
807 |
+
}
|
808 |
+
],
|
809 |
+
"source": [
|
810 |
+
"1+1"
|
811 |
+
]
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"cell_type": "code",
|
815 |
+
"execution_count": 2,
|
816 |
+
"metadata": {
|
817 |
+
"tags": []
|
818 |
+
},
|
819 |
+
"outputs": [],
|
820 |
+
"source": [
|
821 |
+
"%reload_ext autoreload\n",
|
822 |
+
"%autoreload 2"
|
823 |
+
]
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"cell_type": "code",
|
827 |
+
"execution_count": 7,
|
828 |
+
"metadata": {
|
829 |
+
"tags": []
|
830 |
+
},
|
831 |
+
"outputs": [],
|
832 |
+
"source": [
|
833 |
+
"df.to_csv('random.tsv', sep='\\t')"
|
834 |
+
]
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"cell_type": "code",
|
838 |
+
"execution_count": 1,
|
839 |
+
"metadata": {
|
840 |
+
"tags": []
|
841 |
+
},
|
842 |
+
"outputs": [
|
843 |
+
{
|
844 |
+
"name": "stdout",
|
845 |
+
"output_type": "stream",
|
846 |
+
"text": [
|
847 |
+
"disco-io/data\n"
|
848 |
+
]
|
849 |
+
}
|
850 |
+
],
|
851 |
+
"source": [
|
852 |
+
"import utils\n"
|
853 |
+
]
|
854 |
+
},
|
855 |
+
{
|
856 |
+
"cell_type": "code",
|
857 |
+
"execution_count": 4,
|
858 |
+
"metadata": {
|
859 |
+
"tags": []
|
860 |
+
},
|
861 |
+
"outputs": [],
|
862 |
+
"source": [
|
863 |
+
"from utils import get_immediate_subdirectories"
|
864 |
+
]
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"cell_type": "code",
|
868 |
+
"execution_count": 10,
|
869 |
+
"metadata": {
|
870 |
+
"tags": []
|
871 |
+
},
|
872 |
+
"outputs": [
|
873 |
+
{
|
874 |
+
"name": "stdout",
|
875 |
+
"output_type": "stream",
|
876 |
+
"text": [
|
877 |
+
"disco-io/data\n",
|
878 |
+
"Refreshing all datasets: ['test']\n"
|
879 |
+
]
|
880 |
+
}
|
881 |
+
],
|
882 |
+
"source": [
|
883 |
+
"utils.refresh_all_datasets()"
|
884 |
+
]
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"cell_type": "code",
|
888 |
+
"execution_count": 3,
|
889 |
+
"metadata": {
|
890 |
+
"tags": []
|
891 |
+
},
|
892 |
+
"outputs": [
|
893 |
+
{
|
894 |
+
"data": {
|
895 |
+
"text/plain": [
|
896 |
+
"'test'"
|
897 |
+
]
|
898 |
+
},
|
899 |
+
"execution_count": 3,
|
900 |
+
"metadata": {},
|
901 |
+
"output_type": "execute_result"
|
902 |
+
}
|
903 |
+
],
|
904 |
+
"source": [
|
905 |
+
"utils.cur_dataset"
|
906 |
+
]
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"cell_type": "code",
|
910 |
+
"execution_count": 2,
|
911 |
+
"metadata": {
|
912 |
+
"tags": []
|
913 |
+
},
|
914 |
+
"outputs": [
|
915 |
+
{
|
916 |
+
"name": "stdout",
|
917 |
+
"output_type": "stream",
|
918 |
+
"text": [
|
919 |
+
"disco-io/data\n"
|
920 |
+
]
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"data": {
|
924 |
+
"text/plain": [
|
925 |
+
"['test']"
|
926 |
+
]
|
927 |
+
},
|
928 |
+
"execution_count": 2,
|
929 |
+
"metadata": {},
|
930 |
+
"output_type": "execute_result"
|
931 |
+
}
|
932 |
+
],
|
933 |
+
"source": [
|
934 |
+
"get_immediate_subdirectories('data')\n"
|
935 |
+
]
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"cell_type": "code",
|
939 |
+
"execution_count": 20,
|
940 |
+
"metadata": {},
|
941 |
+
"outputs": [],
|
942 |
+
"source": [
|
943 |
+
"import utils"
|
944 |
+
]
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"cell_type": "code",
|
948 |
+
"execution_count": 21,
|
949 |
+
"metadata": {},
|
950 |
+
"outputs": [],
|
951 |
+
"source": [
|
952 |
+
"from utils import fs"
|
953 |
+
]
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"cell_type": "code",
|
957 |
+
"execution_count": 22,
|
958 |
+
"metadata": {},
|
959 |
+
"outputs": [],
|
960 |
+
"source": [
|
961 |
+
"s3_path = 'data'"
|
962 |
+
]
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"cell_type": "code",
|
966 |
+
"execution_count": 23,
|
967 |
+
"metadata": {},
|
968 |
+
"outputs": [],
|
969 |
+
"source": [
|
970 |
+
"s3_full_path = f\"{utils.S3_BUCKET}/{s3_path}\""
|
971 |
+
]
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"cell_type": "code",
|
975 |
+
"execution_count": 24,
|
976 |
+
"metadata": {},
|
977 |
+
"outputs": [
|
978 |
+
{
|
979 |
+
"data": {
|
980 |
+
"text/plain": [
|
981 |
+
"['disco-io/data/Cvlsntdjgrnuyrlf.jpg', 'disco-io/data/test']"
|
982 |
+
]
|
983 |
+
},
|
984 |
+
"execution_count": 24,
|
985 |
+
"metadata": {},
|
986 |
+
"output_type": "execute_result"
|
987 |
+
}
|
988 |
+
],
|
989 |
+
"source": [
|
990 |
+
"fs.glob(f\"{s3_full_path}/*\")"
|
991 |
+
]
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"cell_type": "code",
|
995 |
+
"execution_count": 25,
|
996 |
+
"metadata": {},
|
997 |
+
"outputs": [
|
998 |
+
{
|
999 |
+
"data": {
|
1000 |
+
"text/plain": [
|
1001 |
+
"True"
|
1002 |
+
]
|
1003 |
+
},
|
1004 |
+
"execution_count": 25,
|
1005 |
+
"metadata": {},
|
1006 |
+
"output_type": "execute_result"
|
1007 |
+
}
|
1008 |
+
],
|
1009 |
+
"source": [
|
1010 |
+
"fs.isdir('disco-io/data/test')"
|
1011 |
+
]
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"cell_type": "code",
|
1015 |
+
"execution_count": null,
|
1016 |
+
"metadata": {},
|
1017 |
+
"outputs": [],
|
1018 |
+
"source": []
|
1019 |
+
}
|
1020 |
+
],
|
1021 |
+
"metadata": {
|
1022 |
+
"kernelspec": {
|
1023 |
+
"display_name": "Python 3 (ipykernel)",
|
1024 |
+
"language": "python",
|
1025 |
+
"name": "python3"
|
1026 |
+
},
|
1027 |
+
"language_info": {
|
1028 |
+
"codemirror_mode": {
|
1029 |
+
"name": "ipython",
|
1030 |
+
"version": 3
|
1031 |
+
},
|
1032 |
+
"file_extension": ".py",
|
1033 |
+
"mimetype": "text/x-python",
|
1034 |
+
"name": "python",
|
1035 |
+
"nbconvert_exporter": "python",
|
1036 |
+
"pygments_lexer": "ipython3",
|
1037 |
+
"version": "3.10.0"
|
1038 |
+
},
|
1039 |
+
"vscode": {
|
1040 |
+
"interpreter": {
|
1041 |
+
"hash": "e85fcd8d0dbb45c39d3e544566c77318961c8114425a16ff4cb5c14067743b34"
|
1042 |
+
}
|
1043 |
+
}
|
1044 |
+
},
|
1045 |
+
"nbformat": 4,
|
1046 |
+
"nbformat_minor": 4
|
1047 |
+
}
|
misc.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import random
|
3 |
+
|
4 |
+
# Function to generate random text for titles
|
5 |
+
|
6 |
+
def generate_random_images_df(filename):
|
7 |
+
def generate_title():
|
8 |
+
title_length = random.randint(5, 20)
|
9 |
+
title = ''.join(random.choices('abcdefghijklmnopqrstuvwxyz', k=title_length))
|
10 |
+
return title.capitalize()
|
11 |
+
|
12 |
+
# Function to generate random image URLs
|
13 |
+
def generate_image_url():
|
14 |
+
url = "https://picsum.photos/200/300" # Change the size of the image as per your requirement
|
15 |
+
return url
|
16 |
+
|
17 |
+
# Create a list of dictionaries with random titles and image URLs
|
18 |
+
data = []
|
19 |
+
for i in range(10):
|
20 |
+
data.append({'title': generate_title(), 'IMG_URL': generate_image_url()})
|
21 |
+
|
22 |
+
# Convert the list of dictionaries to a Pandas DataFrame
|
23 |
+
df = pd.DataFrame(data)
|
24 |
+
df.to_csv(filename, sep='\t', index=False)
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==3.30.0
|
2 |
+
numpy==1.23.5
|
3 |
+
pandas==1.5.3
|
4 |
+
pandas_stubs==1.2.0.35
|
5 |
+
Pillow==9.5.0
|
6 |
+
sentence_transformers==2.2.2
|
7 |
+
pyarrow
|
8 |
+
transformers~=4.26.1
|
9 |
+
tqdm
|
10 |
+
streamlit
|
11 |
+
s3fs
|
12 |
+
requests
|
13 |
+
pinecone-client
|
run.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
with gr.Blocks() as demo:
|
4 |
+
gr.Markdown(
|
5 |
+
"""
|
6 |
+
# Animal Generator
|
7 |
+
Once you select a species, the detail panel should be visible.
|
8 |
+
"""
|
9 |
+
)
|
10 |
+
|
11 |
+
species = gr.Radio(label="Animal Class", choices=["Mammal", "Fish", "Bird"])
|
12 |
+
animal = gr.Dropdown(label="Animal", choices=[])
|
13 |
+
|
14 |
+
with gr.Column(visible=False) as details_col:
|
15 |
+
weight = gr.Slider(0, 20)
|
16 |
+
details = gr.Textbox(label="Extra Details")
|
17 |
+
generate_btn = gr.Button("Generate")
|
18 |
+
output = gr.Textbox(label="Output")
|
19 |
+
|
20 |
+
species_map = {
|
21 |
+
"Mammal": ["Elephant", "Giraffe", "Hamster"],
|
22 |
+
"Fish": ["Shark", "Salmon", "Tuna"],
|
23 |
+
"Bird": ["Chicken", "Eagle", "Hawk"],
|
24 |
+
}
|
25 |
+
|
26 |
+
def filter_species(species):
|
27 |
+
return gr.Dropdown.update(
|
28 |
+
choices=species_map[species], value=species_map[species][1]
|
29 |
+
), gr.update(visible=True)
|
30 |
+
|
31 |
+
species.change(filter_species, species, [animal, details_col])
|
32 |
+
|
33 |
+
def filter_weight(animal):
|
34 |
+
if animal in ("Elephant", "Shark", "Giraffe"):
|
35 |
+
return gr.update(maximum=100)
|
36 |
+
else:
|
37 |
+
return gr.update(maximum=20)
|
38 |
+
|
39 |
+
animal.change(filter_weight, animal, weight)
|
40 |
+
weight.change(lambda w: gr.update(lines=int(w / 10) + 1), weight, details)
|
41 |
+
|
42 |
+
generate_btn.click(lambda x: x, details, output)
|
43 |
+
|
44 |
+
|
45 |
+
if __name__ == "__main__":
|
46 |
+
|
47 |
+
from tqdm import tqdm
|
48 |
+
|
49 |
+
for i in tqdm(range(int(9e6))):
|
50 |
+
pass
|
51 |
+
#demo.launch()
|
streamlit_app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
def process_image(input_image):
|
6 |
+
# Your image processing function goes here
|
7 |
+
output_image = input_image.copy()
|
8 |
+
return output_image
|
9 |
+
|
10 |
+
# Set the title of the web application
|
11 |
+
st.title('Multiple Input and Output Images Interface')
|
12 |
+
|
13 |
+
# Create a sidebar for image inputs
|
14 |
+
st.sidebar.title('Input Images')
|
15 |
+
|
16 |
+
# Set up a file uploader in the sidebar for each input image
|
17 |
+
uploaded_images = []
|
18 |
+
num_images = 3 # The number of input images
|
19 |
+
for i in range(num_images):
|
20 |
+
uploaded_image = st.sidebar.file_uploader(f'Upload Image {i+1}', type=['png', 'jpg', 'jpeg'])
|
21 |
+
if uploaded_image is not None:
|
22 |
+
uploaded_images.append(uploaded_image)
|
23 |
+
|
24 |
+
# Display input images and process them
|
25 |
+
if uploaded_images:
|
26 |
+
st.header('Input Images')
|
27 |
+
input_images = []
|
28 |
+
for img in uploaded_images:
|
29 |
+
input_img = Image.open(img)
|
30 |
+
input_images.append(input_img)
|
31 |
+
st.image(input_img, width=200, caption='Uploaded Image')
|
32 |
+
|
33 |
+
# Process input images and display output images
|
34 |
+
st.header('Output Images')
|
35 |
+
for input_img in input_images:
|
36 |
+
output_img = process_image(input_img)
|
37 |
+
st.image(output_img, width=200, caption='Processed Image')
|
38 |
+
else:
|
39 |
+
st.warning('Please upload images in the sidebar.')
|
utils.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer, util as st_util
|
2 |
+
from transformers import CLIPModel, CLIPProcessor
|
3 |
+
|
4 |
+
from PIL import Image
|
5 |
+
import requests
|
6 |
+
import os
|
7 |
+
import torch
|
8 |
+
torch.set_printoptions(precision=10)
|
9 |
+
from tqdm import tqdm
|
10 |
+
import s3fs
|
11 |
+
from io import BytesIO
|
12 |
+
import vector_db
|
13 |
+
|
14 |
+
"sentence-transformer-clip-ViT-L-14"
|
15 |
+
"openai-clip"
|
16 |
+
model_names = ["fashion"]
|
17 |
+
|
18 |
+
model_name_to_ids = {
|
19 |
+
"sentence-transformer-clip-ViT-L-14": "clip-ViT-L-14",
|
20 |
+
"fashion": "patrickjohncyh/fashion-clip",
|
21 |
+
"openai-clip": "openai/clip-vit-base-patch32",
|
22 |
+
}
|
23 |
+
|
24 |
+
AWS_ACCESS_KEY_ID = os.environ["AWS_ACCESS_KEY_ID"]
|
25 |
+
AWS_SECRET_ACCESS_KEY = os.environ["AWS_SECRET_ACCESS_KEY"]
|
26 |
+
|
27 |
+
# Define your bucket and dataset name.
|
28 |
+
S3_BUCKET = "s3://disco-io"
|
29 |
+
|
30 |
+
fs = s3fs.S3FileSystem(
|
31 |
+
key=AWS_ACCESS_KEY_ID,
|
32 |
+
secret=AWS_SECRET_ACCESS_KEY,
|
33 |
+
)
|
34 |
+
|
35 |
+
ROOT_DATA_PATH = os.path.join(S3_BUCKET, 'data')
|
36 |
+
|
37 |
+
def get_data_path():
|
38 |
+
return os.path.join(ROOT_DATA_PATH, cur_dataset)
|
39 |
+
|
40 |
+
def get_image_path():
|
41 |
+
return os.path.join(get_data_path(), 'images')
|
42 |
+
|
43 |
+
def get_metadata_path():
|
44 |
+
return os.path.join(get_data_path(), 'metadata')
|
45 |
+
|
46 |
+
def get_embeddings_path():
|
47 |
+
return os.path.join(get_metadata_path(), cur_dataset + '_embeddings.pq')
|
48 |
+
|
49 |
+
model_dict = dict()
|
50 |
+
|
51 |
+
|
52 |
+
def download_to_s3(url, s3_path):
|
53 |
+
# Download the file from the URL
|
54 |
+
response = requests.get(url, stream=True)
|
55 |
+
response.raise_for_status()
|
56 |
+
|
57 |
+
# Upload the file to the S3 path
|
58 |
+
with fs.open(s3_path, "wb") as s3_file:
|
59 |
+
for chunk in response.iter_content(chunk_size=8192):
|
60 |
+
s3_file.write(chunk)
|
61 |
+
|
62 |
+
|
63 |
+
def remove_all_files_from_s3_directory(s3_directory):
|
64 |
+
# List all objects in the S3 directory
|
65 |
+
objects = fs.ls(s3_directory)
|
66 |
+
|
67 |
+
# Remove each object
|
68 |
+
for obj in objects:
|
69 |
+
try:
|
70 |
+
fs.rm(obj)
|
71 |
+
except:
|
72 |
+
print('Error removing file: ' + obj)
|
73 |
+
|
74 |
+
def download_images(df, img_folder):
|
75 |
+
remove_all_files_from_s3_directory(img_folder)
|
76 |
+
for index, row in df.iterrows():
|
77 |
+
try:
|
78 |
+
download_to_s3(row['IMG_URL'], os.path.join(img_folder,
|
79 |
+
row['title'].replace('/', '_').replace('\n', '') + '.jpg'))
|
80 |
+
except:
|
81 |
+
print('Error downloading image: ' + str(index) + row['title'])
|
82 |
+
|
83 |
+
|
84 |
+
def load_models():
|
85 |
+
for model_name in model_name_to_ids:
|
86 |
+
if model_name not in model_dict:
|
87 |
+
model_dict[model_name] = dict()
|
88 |
+
if model_name.startswith('sentence-transformer'):
|
89 |
+
model_dict[model_name]['model'] = SentenceTransformer(model_name_to_ids[model_name])
|
90 |
+
else:
|
91 |
+
model_dict[model_name]['hf_dir'] = model_name_to_ids[model_name]
|
92 |
+
model_dict[model_name]['model'] = CLIPModel.from_pretrained(model_name_to_ids[model_name])
|
93 |
+
model_dict[model_name]['processor'] = CLIPProcessor.from_pretrained(model_name_to_ids[model_name])
|
94 |
+
|
95 |
+
|
96 |
+
if len(model_dict) == 0:
|
97 |
+
print('Loading models...')
|
98 |
+
load_models()
|
99 |
+
|
100 |
+
|
101 |
+
def get_image_embedding(model_name, image):
|
102 |
+
"""
|
103 |
+
Takes an image as input and returns an embedding vector.
|
104 |
+
"""
|
105 |
+
model = model_dict[model_name]['model']
|
106 |
+
if model_name.startswith('sentence-transformer'):
|
107 |
+
return model.encode(image)
|
108 |
+
else:
|
109 |
+
inputs = model_dict[model_name]['processor'](images=image, return_tensors="pt")
|
110 |
+
image_features = model.get_image_features(**inputs).detach().numpy()[0]
|
111 |
+
return image_features
|
112 |
+
|
113 |
+
def s3_path_to_image(fs, s3_path):
|
114 |
+
"""
|
115 |
+
Takes an S3 path as input and returns a PIL Image object.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
s3_path (str): The path to the image in the S3 bucket, including the bucket name (e.g., "bucket_name/path/to/image.jpg").
|
119 |
+
|
120 |
+
Returns:
|
121 |
+
Image: A PIL Image object.
|
122 |
+
"""
|
123 |
+
with fs.open(s3_path, "rb") as f:
|
124 |
+
image_data = BytesIO(f.read())
|
125 |
+
img = Image.open(image_data)
|
126 |
+
return img
|
127 |
+
|
128 |
+
def generate_and_save_embeddings():
|
129 |
+
# Get image embeddings
|
130 |
+
with torch.no_grad():
|
131 |
+
for fp in tqdm(fs.ls(get_image_path()), desc="Generate embeddings for Images"):
|
132 |
+
if fp.endswith('.jpg'):
|
133 |
+
name = fp.split('/')[-1]
|
134 |
+
for model_name in model_name_to_ids.keys():
|
135 |
+
s3_path = 's3://' + fp
|
136 |
+
vector_db.add_image_embedding_to_db(
|
137 |
+
embedding=get_image_embedding(model_name, s3_path_to_image(fs, s3_path)),
|
138 |
+
model_name=model_name,
|
139 |
+
dataset_name=cur_dataset,
|
140 |
+
path_to_image=s3_path,
|
141 |
+
image_name=name,
|
142 |
+
)
|
143 |
+
|
144 |
+
|
145 |
+
def get_immediate_subdirectories(s3_path):
|
146 |
+
return [obj.split('/')[-1] for obj in fs.glob(f"{s3_path}/*") if fs.isdir(obj)]
|
147 |
+
|
148 |
+
all_datasets = get_immediate_subdirectories(ROOT_DATA_PATH)
|
149 |
+
cur_dataset = all_datasets[0]
|
150 |
+
|
151 |
+
def set_cur_dataset(dataset):
|
152 |
+
refresh_all_datasets()
|
153 |
+
print(f"Setting current dataset to {dataset}")
|
154 |
+
global cur_dataset
|
155 |
+
cur_dataset = dataset
|
156 |
+
|
157 |
+
def refresh_all_datasets():
|
158 |
+
global all_datasets
|
159 |
+
all_datasets = get_immediate_subdirectories(ROOT_DATA_PATH)
|
160 |
+
print(f"Refreshing all datasets: {all_datasets}")
|
161 |
+
|
162 |
+
def url_to_image(url):
|
163 |
+
try:
|
164 |
+
response = requests.get(url)
|
165 |
+
response.raise_for_status()
|
166 |
+
img = Image.open(BytesIO(response.content))
|
167 |
+
return img
|
168 |
+
except requests.exceptions.RequestException as e:
|
169 |
+
print(f"Error fetching image from URL: {url}")
|
170 |
+
return None
|
vector_db.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pinecone
|
2 |
+
import os
|
3 |
+
import uuid
|
4 |
+
|
5 |
+
pinecone.init(api_key=os.environ["PINECONE_API_KEY"], environment="us-west1-gcp")
|
6 |
+
|
7 |
+
INDEX_512_NAME = "images-512"
|
8 |
+
INDEX_768_NAME = "images-768"
|
9 |
+
|
10 |
+
index_512 = pinecone.Index(INDEX_512_NAME)
|
11 |
+
index_768 = pinecone.Index(INDEX_768_NAME)
|
12 |
+
|
13 |
+
DEV_NAMESPACE = 'disco-web-app-search-dev'
|
14 |
+
PROD_NAMESPACE = 'disco-web-app-search-prod'
|
15 |
+
|
16 |
+
|
17 |
+
def add_image_embedding_to_db(embedding, model_name, dataset_name, path_to_image, image_name):
|
18 |
+
index = {
|
19 |
+
512: index_512,
|
20 |
+
768: index_768
|
21 |
+
}[embedding.shape[0]]
|
22 |
+
print (embedding.shape)
|
23 |
+
index.upsert([(str(uuid.uuid4()), embedding.tolist(), {'model': model_name,
|
24 |
+
'dataset': dataset_name,
|
25 |
+
'path': path_to_image,
|
26 |
+
'image_name': image_name})])
|
27 |
+
|
28 |
+
|
29 |
+
def query_embeddings_db(query_embedding, dataset_name, model_name, top_k=4):
|
30 |
+
index = {
|
31 |
+
512: index_512,
|
32 |
+
768: index_768
|
33 |
+
}[len(query_embedding)]
|
34 |
+
return index.query(vector=query_embedding,
|
35 |
+
top_k=top_k,
|
36 |
+
namespace=DEV_NAMESPACE,
|
37 |
+
include_metadata=True)
|