File size: 3,251 Bytes
4c9bb7b 020e37f 0bec97d 4c9bb7b 020e37f 0bec97d 020e37f 4c9bb7b 0bec97d 4c9bb7b 0bec97d 4c9bb7b 0bec97d 4c9bb7b 0bec97d 020e37f 0bec97d 4c9bb7b 0bec97d 4c9bb7b 0bec97d 4c9bb7b 0bec97d 4c9bb7b 0bec97d 4c9bb7b 0bec97d 4c9bb7b 0bec97d 4c9bb7b 0bec97d 4c9bb7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import gradio as gr
import torch
# from diffusers import DiffusionPipeline
from diffusers import StableDiffusionPipeline
from diffusers.models import AutoencoderKL
from diffusers import StableDiffusionPipeline
def generate(prompt, negative_prompts, samples, steps,scale, seed, width, height):
pipeline = StableDiffusionPipeline.from_pretrained("jayparmr/icbinp", use_auth_token="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", torch_dtype=torch.float16)
pipeline.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(int(seed))
images_list = pipeline(
[prompt] * samples,
negative_prompt= [negative_prompts] * samples,
num_inference_steps=steps,
guidance_scale=scale,
generator=generator,
width=width,
height=height
)
# vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae")
# pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", vae=vae).to("cuda")
# images_list = pipe(
# [prompt] * samples,
# negative_prompt= [negative_prompts] * samples,
# num_inference_steps=steps,
# guidance_scale=scale
# )
print("stop gen")
images = []
print(images_list)
for i, image in enumerate(images_list["images"]):
images.append(image)
return images
block = gr.Blocks()
with block:
with gr.Group():
with gr.Box():
with gr.Row().style(equal_height=True):
text = gr.Textbox(
label="Enter your prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
)
negative_text = gr.Textbox(
value="",
label="Enter your negative prompt",
show_label=False,
max_lines=1,
placeholder="Enter your negative prompt",
)
btn = gr.Button("Generate image")
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery", width = 768
)
# gallery = gr.Image(
# label="Generated images", elem_id="gallery", width = 768, height = 536
# )
with gr.Row(elem_id="advanced-options"):
samples = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1)
steps = gr.Slider(label="Steps", minimum=1, maximum=500, value=100, step=1)
width = gr.Slider(label="width", minimum=1, maximum=2048, value=512, step=1)
height = gr.Slider(label="height", minimum=1, maximum=2048, value=512, step=1)
scale = gr.Slider(
label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=2147483647,
step=1
)
text.submit(generate, inputs=[text,negative_text, samples, steps, scale, seed, width, height], outputs=gallery)
btn.click(generate, inputs=[text,negative_text, samples, steps, scale, seed, width, height], outputs=gallery)
block.launch() |