File size: 3,789 Bytes
7b48653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import torch
import torch.utils.data
from librosa.filters import mel as librosa_mel_fn


MAX_WAV_VALUE = 32768.0


def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
    """
    PARAMS
    ------
    C: compression factor
    """
    return torch.log(torch.clamp(x, min=clip_val) * C)


def dynamic_range_decompression_torch(x, C=1):
    """
    PARAMS
    ------
    C: compression factor used to compress
    """
    return torch.exp(x) / C


def spectral_normalize_torch(magnitudes):
    return dynamic_range_compression_torch(magnitudes)


def spectral_de_normalize_torch(magnitudes):
    return dynamic_range_decompression_torch(magnitudes)


# Reusable banks
mel_basis = {}
hann_window = {}


def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
    """Convert waveform into Linear-frequency Linear-amplitude spectrogram.

    Args:
        y             :: (B, T) - Audio waveforms
        n_fft
        sampling_rate
        hop_size
        win_size
        center
    Returns:
        :: (B, Freq, Frame) - Linear-frequency Linear-amplitude spectrogram
    """
    # Validation
    if torch.min(y) < -1.0:
        print("min value is ", torch.min(y))
    if torch.max(y) > 1.0:
        print("max value is ", torch.max(y))

    # Window - Cache if needed
    global hann_window
    dtype_device = str(y.dtype) + "_" + str(y.device)
    wnsize_dtype_device = str(win_size) + "_" + dtype_device
    if wnsize_dtype_device not in hann_window:
        hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
            dtype=y.dtype, device=y.device
        )

    # Padding
    y = torch.nn.functional.pad(
        y.unsqueeze(1),
        (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
        mode="reflect",
    )
    y = y.squeeze(1)

    # Complex Spectrogram :: (B, T) -> (B, Freq, Frame, RealComplex=2)
    spec = torch.stft(
        y,
        n_fft,
        hop_length=hop_size,
        win_length=win_size,
        window=hann_window[wnsize_dtype_device],
        center=center,
        pad_mode="reflect",
        normalized=False,
        onesided=True,
        return_complex=False,
    )

    # Linear-frequency Linear-amplitude spectrogram :: (B, Freq, Frame, RealComplex=2) -> (B, Freq, Frame)
    spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
    return spec


def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
    # MelBasis - Cache if needed
    global mel_basis
    dtype_device = str(spec.dtype) + "_" + str(spec.device)
    fmax_dtype_device = str(fmax) + "_" + dtype_device
    if fmax_dtype_device not in mel_basis:
        mel = librosa_mel_fn(
            sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
        )
        mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
            dtype=spec.dtype, device=spec.device
        )

    # Mel-frequency Log-amplitude spectrogram :: (B, Freq=num_mels, Frame)
    melspec = torch.matmul(mel_basis[fmax_dtype_device], spec)
    melspec = spectral_normalize_torch(melspec)
    return melspec


def mel_spectrogram_torch(
    y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
):
    """Convert waveform into Mel-frequency Log-amplitude spectrogram.

    Args:
        y       :: (B, T)           - Waveforms
    Returns:
        melspec :: (B, Freq, Frame) - Mel-frequency Log-amplitude spectrogram
    """
    # Linear-frequency Linear-amplitude spectrogram :: (B, T) -> (B, Freq, Frame)
    spec = spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center)

    # Mel-frequency Log-amplitude spectrogram :: (B, Freq, Frame) -> (B, Freq=num_mels, Frame)
    melspec = spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax)

    return melspec