Spaces:
Runtime error
Runtime error
import os, sys | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
import PySimpleGUI as sg | |
import sounddevice as sd | |
import noisereduce as nr | |
import numpy as np | |
from fairseq import checkpoint_utils | |
import librosa, torch, pyworld, faiss, time, threading | |
import torch.nn.functional as F | |
import torchaudio.transforms as tat | |
import scipy.signal as signal | |
# import matplotlib.pyplot as plt | |
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono | |
from i18n import I18nAuto | |
i18n = I18nAuto() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
class RVC: | |
def __init__( | |
self, key, hubert_path, pth_path, index_path, npy_path, index_rate | |
) -> None: | |
""" | |
初始化 | |
""" | |
try: | |
self.f0_up_key = key | |
self.time_step = 160 / 16000 * 1000 | |
self.f0_min = 50 | |
self.f0_max = 1100 | |
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700) | |
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700) | |
self.sr = 16000 | |
self.window = 160 | |
if index_rate != 0: | |
self.index = faiss.read_index(index_path) | |
# self.big_npy = np.load(npy_path) | |
self.big_npy = index.reconstruct_n(0, self.index.ntotal) | |
print("index search enabled") | |
self.index_rate = index_rate | |
model_path = hubert_path | |
print("load model(s) from {}".format(model_path)) | |
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( | |
[model_path], | |
suffix="", | |
) | |
self.model = models[0] | |
self.model = self.model.to(device) | |
self.model = self.model.half() | |
self.model.eval() | |
cpt = torch.load(pth_path, map_location="cpu") | |
self.tgt_sr = cpt["config"][-1] | |
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk | |
self.if_f0 = cpt.get("f0", 1) | |
if self.if_f0 == 1: | |
self.net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=True) | |
else: | |
self.net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | |
del self.net_g.enc_q | |
print(self.net_g.load_state_dict(cpt["weight"], strict=False)) | |
self.net_g.eval().to(device) | |
self.net_g.half() | |
except Exception as e: | |
print(e) | |
def get_f0(self, x, f0_up_key, inp_f0=None): | |
x_pad = 1 | |
f0_min = 50 | |
f0_max = 1100 | |
f0_mel_min = 1127 * np.log(1 + f0_min / 700) | |
f0_mel_max = 1127 * np.log(1 + f0_max / 700) | |
f0, t = pyworld.harvest( | |
x.astype(np.double), | |
fs=self.sr, | |
f0_ceil=f0_max, | |
f0_floor=f0_min, | |
frame_period=10, | |
) | |
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr) | |
f0 = signal.medfilt(f0, 3) | |
f0 *= pow(2, f0_up_key / 12) | |
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()])) | |
tf0 = self.sr // self.window # 每秒f0点数 | |
if inp_f0 is not None: | |
delta_t = np.round( | |
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1 | |
).astype("int16") | |
replace_f0 = np.interp( | |
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1] | |
) | |
shape = f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)].shape[0] | |
f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)] = replace_f0[:shape] | |
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()])) | |
f0bak = f0.copy() | |
f0_mel = 1127 * np.log(1 + f0 / 700) | |
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / ( | |
f0_mel_max - f0_mel_min | |
) + 1 | |
f0_mel[f0_mel <= 1] = 1 | |
f0_mel[f0_mel > 255] = 255 | |
f0_coarse = np.rint(f0_mel).astype(np.int) | |
return f0_coarse, f0bak # 1-0 | |
def infer(self, feats: torch.Tensor) -> np.ndarray: | |
""" | |
推理函数 | |
""" | |
audio = feats.clone().cpu().numpy() | |
assert feats.dim() == 1, feats.dim() | |
feats = feats.view(1, -1) | |
padding_mask = torch.BoolTensor(feats.shape).fill_(False) | |
inputs = { | |
"source": feats.half().to(device), | |
"padding_mask": padding_mask.to(device), | |
"output_layer": 9, # layer 9 | |
} | |
torch.cuda.synchronize() | |
with torch.no_grad(): | |
logits = self.model.extract_features(**inputs) | |
feats = self.model.final_proj(logits[0]) | |
####索引优化 | |
if hasattr(self, "index") and hasattr(self, "big_npy") and self.index_rate != 0: | |
npy = feats[0].cpu().numpy().astype("float32") | |
# _, I = self.index.search(npy, 1) | |
# npy = self.big_npy[I.squeeze()].astype("float16") | |
score, ix = index.search(npy, k=8) | |
weight = np.square(1 / score) | |
weight /= weight.sum(axis=1, keepdims=True) | |
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1).astype( | |
"float16" | |
) | |
feats = ( | |
torch.from_numpy(npy).unsqueeze(0).to(device) * self.index_rate | |
+ (1 - self.index_rate) * feats | |
) | |
else: | |
print("index search FAIL or disabled") | |
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) | |
torch.cuda.synchronize() | |
print(feats.shape) | |
if self.if_f0 == 1: | |
pitch, pitchf = self.get_f0(audio, self.f0_up_key) | |
p_len = min(feats.shape[1], 13000, pitch.shape[0]) # 太大了爆显存 | |
else: | |
pitch, pitchf = None, None | |
p_len = min(feats.shape[1], 13000) # 太大了爆显存 | |
torch.cuda.synchronize() | |
# print(feats.shape,pitch.shape) | |
feats = feats[:, :p_len, :] | |
if self.if_f0 == 1: | |
pitch = pitch[:p_len] | |
pitchf = pitchf[:p_len] | |
pitch = torch.LongTensor(pitch).unsqueeze(0).to(device) | |
pitchf = torch.FloatTensor(pitchf).unsqueeze(0).to(device) | |
p_len = torch.LongTensor([p_len]).to(device) | |
ii = 0 # sid | |
sid = torch.LongTensor([ii]).to(device) | |
with torch.no_grad(): | |
if self.if_f0 == 1: | |
infered_audio = ( | |
self.net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] | |
.data.cpu() | |
.float() | |
) | |
else: | |
infered_audio = ( | |
self.net_g.infer(feats, p_len, sid)[0][0, 0].data.cpu().float() | |
) | |
torch.cuda.synchronize() | |
return infered_audio | |
class Config: | |
def __init__(self) -> None: | |
self.hubert_path: str = "" | |
self.pth_path: str = "" | |
self.index_path: str = "" | |
self.npy_path: str = "" | |
self.pitch: int = 12 | |
self.samplerate: int = 44100 | |
self.block_time: float = 1.0 # s | |
self.buffer_num: int = 1 | |
self.threhold: int = -30 | |
self.crossfade_time: float = 0.08 | |
self.extra_time: float = 0.04 | |
self.I_noise_reduce = False | |
self.O_noise_reduce = False | |
self.index_rate = 0.3 | |
class GUI: | |
def __init__(self) -> None: | |
self.config = Config() | |
self.flag_vc = False | |
self.launcher() | |
def launcher(self): | |
sg.theme("LightBlue3") | |
input_devices, output_devices, _, _ = self.get_devices() | |
layout = [ | |
[ | |
sg.Frame( | |
title=i18n("加载模型"), | |
layout=[ | |
[ | |
sg.Input(default_text="hubert_base.pt", key="hubert_path"), | |
sg.FileBrowse(i18n("Hubert模型")), | |
], | |
[ | |
sg.Input(default_text="TEMP\\atri.pth", key="pth_path"), | |
sg.FileBrowse(i18n("选择.pth文件")), | |
], | |
[ | |
sg.Input( | |
default_text="TEMP\\added_IVF512_Flat_atri_baseline_src_feat.index", | |
key="index_path", | |
), | |
sg.FileBrowse(i18n("选择.index文件")), | |
], | |
[ | |
sg.Input( | |
default_text="你不需要填写这个You don't need write this.", | |
key="npy_path", | |
), | |
sg.FileBrowse(i18n("选择.npy文件")), | |
], | |
], | |
) | |
], | |
[ | |
sg.Frame( | |
layout=[ | |
[ | |
sg.Text(i18n("输入设备")), | |
sg.Combo( | |
input_devices, | |
key="sg_input_device", | |
default_value=input_devices[sd.default.device[0]], | |
), | |
], | |
[ | |
sg.Text(i18n("输出设备")), | |
sg.Combo( | |
output_devices, | |
key="sg_output_device", | |
default_value=output_devices[sd.default.device[1]], | |
), | |
], | |
], | |
title=i18n("音频设备(请使用同种类驱动)"), | |
) | |
], | |
[ | |
sg.Frame( | |
layout=[ | |
[ | |
sg.Text(i18n("响应阈值")), | |
sg.Slider( | |
range=(-60, 0), | |
key="threhold", | |
resolution=1, | |
orientation="h", | |
default_value=-30, | |
), | |
], | |
[ | |
sg.Text(i18n("音调设置")), | |
sg.Slider( | |
range=(-24, 24), | |
key="pitch", | |
resolution=1, | |
orientation="h", | |
default_value=12, | |
), | |
], | |
[ | |
sg.Text(i18n("Index Rate")), | |
sg.Slider( | |
range=(0.0, 1.0), | |
key="index_rate", | |
resolution=0.01, | |
orientation="h", | |
default_value=0.5, | |
), | |
], | |
], | |
title=i18n("常规设置"), | |
), | |
sg.Frame( | |
layout=[ | |
[ | |
sg.Text(i18n("采样长度")), | |
sg.Slider( | |
range=(0.1, 3.0), | |
key="block_time", | |
resolution=0.1, | |
orientation="h", | |
default_value=1.0, | |
), | |
], | |
[ | |
sg.Text(i18n("淡入淡出长度")), | |
sg.Slider( | |
range=(0.01, 0.15), | |
key="crossfade_length", | |
resolution=0.01, | |
orientation="h", | |
default_value=0.08, | |
), | |
], | |
[ | |
sg.Text(i18n("额外推理时长")), | |
sg.Slider( | |
range=(0.05, 3.00), | |
key="extra_time", | |
resolution=0.01, | |
orientation="h", | |
default_value=0.05, | |
), | |
], | |
[ | |
sg.Checkbox(i18n("输入降噪"), key="I_noise_reduce"), | |
sg.Checkbox(i18n("输出降噪"), key="O_noise_reduce"), | |
], | |
], | |
title=i18n("性能设置"), | |
), | |
], | |
[ | |
sg.Button(i18n("开始音频转换"), key="start_vc"), | |
sg.Button(i18n("停止音频转换"), key="stop_vc"), | |
sg.Text(i18n("推理时间(ms):")), | |
sg.Text("0", key="infer_time"), | |
], | |
] | |
self.window = sg.Window("RVC - GUI", layout=layout) | |
self.event_handler() | |
def event_handler(self): | |
while True: | |
event, values = self.window.read() | |
if event == sg.WINDOW_CLOSED: | |
self.flag_vc = False | |
exit() | |
if event == "start_vc" and self.flag_vc == False: | |
self.set_values(values) | |
print(str(self.config.__dict__)) | |
print("using_cuda:" + str(torch.cuda.is_available())) | |
self.start_vc() | |
if event == "stop_vc" and self.flag_vc == True: | |
self.flag_vc = False | |
def set_values(self, values): | |
self.set_devices(values["sg_input_device"], values["sg_output_device"]) | |
self.config.hubert_path = values["hubert_path"] | |
self.config.pth_path = values["pth_path"] | |
self.config.index_path = values["index_path"] | |
self.config.npy_path = values["npy_path"] | |
self.config.threhold = values["threhold"] | |
self.config.pitch = values["pitch"] | |
self.config.block_time = values["block_time"] | |
self.config.crossfade_time = values["crossfade_length"] | |
self.config.extra_time = values["extra_time"] | |
self.config.I_noise_reduce = values["I_noise_reduce"] | |
self.config.O_noise_reduce = values["O_noise_reduce"] | |
self.config.index_rate = values["index_rate"] | |
def start_vc(self): | |
torch.cuda.empty_cache() | |
self.flag_vc = True | |
self.block_frame = int(self.config.block_time * self.config.samplerate) | |
self.crossfade_frame = int(self.config.crossfade_time * self.config.samplerate) | |
self.sola_search_frame = int(0.012 * self.config.samplerate) | |
self.delay_frame = int(0.01 * self.config.samplerate) # 往前预留0.02s | |
self.extra_frame = int(self.config.extra_time * self.config.samplerate) | |
self.rvc = None | |
self.rvc = RVC( | |
self.config.pitch, | |
self.config.hubert_path, | |
self.config.pth_path, | |
self.config.index_path, | |
self.config.npy_path, | |
self.config.index_rate, | |
) | |
self.input_wav: np.ndarray = np.zeros( | |
self.extra_frame | |
+ self.crossfade_frame | |
+ self.sola_search_frame | |
+ self.block_frame, | |
dtype="float32", | |
) | |
self.output_wav: torch.Tensor = torch.zeros( | |
self.block_frame, device=device, dtype=torch.float32 | |
) | |
self.sola_buffer: torch.Tensor = torch.zeros( | |
self.crossfade_frame, device=device, dtype=torch.float32 | |
) | |
self.fade_in_window: torch.Tensor = torch.linspace( | |
0.0, 1.0, steps=self.crossfade_frame, device=device, dtype=torch.float32 | |
) | |
self.fade_out_window: torch.Tensor = 1 - self.fade_in_window | |
self.resampler1 = tat.Resample( | |
orig_freq=self.config.samplerate, new_freq=16000, dtype=torch.float32 | |
) | |
self.resampler2 = tat.Resample( | |
orig_freq=self.rvc.tgt_sr, | |
new_freq=self.config.samplerate, | |
dtype=torch.float32, | |
) | |
thread_vc = threading.Thread(target=self.soundinput) | |
thread_vc.start() | |
def soundinput(self): | |
""" | |
接受音频输入 | |
""" | |
with sd.Stream( | |
callback=self.audio_callback, | |
blocksize=self.block_frame, | |
samplerate=self.config.samplerate, | |
dtype="float32", | |
): | |
while self.flag_vc: | |
time.sleep(self.config.block_time) | |
print("Audio block passed.") | |
print("ENDing VC") | |
def audio_callback( | |
self, indata: np.ndarray, outdata: np.ndarray, frames, times, status | |
): | |
""" | |
音频处理 | |
""" | |
start_time = time.perf_counter() | |
indata = librosa.to_mono(indata.T) | |
if self.config.I_noise_reduce: | |
indata[:] = nr.reduce_noise(y=indata, sr=self.config.samplerate) | |
"""noise gate""" | |
frame_length = 2048 | |
hop_length = 1024 | |
rms = librosa.feature.rms( | |
y=indata, frame_length=frame_length, hop_length=hop_length | |
) | |
db_threhold = librosa.amplitude_to_db(rms, ref=1.0)[0] < self.config.threhold | |
# print(rms.shape,db.shape,db) | |
for i in range(db_threhold.shape[0]): | |
if db_threhold[i]: | |
indata[i * hop_length : (i + 1) * hop_length] = 0 | |
self.input_wav[:] = np.append(self.input_wav[self.block_frame :], indata) | |
# infer | |
print("input_wav:" + str(self.input_wav.shape)) | |
# print('infered_wav:'+str(infer_wav.shape)) | |
infer_wav: torch.Tensor = self.resampler2( | |
self.rvc.infer(self.resampler1(torch.from_numpy(self.input_wav))) | |
)[-self.crossfade_frame - self.sola_search_frame - self.block_frame :].to( | |
device | |
) | |
print("infer_wav:" + str(infer_wav.shape)) | |
# SOLA algorithm from https://github.com/yxlllc/DDSP-SVC | |
cor_nom = F.conv1d( | |
infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame], | |
self.sola_buffer[None, None, :], | |
) | |
cor_den = torch.sqrt( | |
F.conv1d( | |
infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame] | |
** 2, | |
torch.ones(1, 1, self.crossfade_frame, device=device), | |
) | |
+ 1e-8 | |
) | |
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0]) | |
print("sola offset: " + str(int(sola_offset))) | |
# crossfade | |
self.output_wav[:] = infer_wav[sola_offset : sola_offset + self.block_frame] | |
self.output_wav[: self.crossfade_frame] *= self.fade_in_window | |
self.output_wav[: self.crossfade_frame] += self.sola_buffer[:] | |
if sola_offset < self.sola_search_frame: | |
self.sola_buffer[:] = ( | |
infer_wav[ | |
-self.sola_search_frame | |
- self.crossfade_frame | |
+ sola_offset : -self.sola_search_frame | |
+ sola_offset | |
] | |
* self.fade_out_window | |
) | |
else: | |
self.sola_buffer[:] = ( | |
infer_wav[-self.crossfade_frame :] * self.fade_out_window | |
) | |
if self.config.O_noise_reduce: | |
outdata[:] = np.tile( | |
nr.reduce_noise( | |
y=self.output_wav[:].cpu().numpy(), sr=self.config.samplerate | |
), | |
(2, 1), | |
).T | |
else: | |
outdata[:] = self.output_wav[:].repeat(2, 1).t().cpu().numpy() | |
total_time = time.perf_counter() - start_time | |
self.window["infer_time"].update(int(total_time * 1000)) | |
print("infer time:" + str(total_time)) | |
def get_devices(self, update: bool = True): | |
"""获取设备列表""" | |
if update: | |
sd._terminate() | |
sd._initialize() | |
devices = sd.query_devices() | |
hostapis = sd.query_hostapis() | |
for hostapi in hostapis: | |
for device_idx in hostapi["devices"]: | |
devices[device_idx]["hostapi_name"] = hostapi["name"] | |
input_devices = [ | |
f"{d['name']} ({d['hostapi_name']})" | |
for d in devices | |
if d["max_input_channels"] > 0 | |
] | |
output_devices = [ | |
f"{d['name']} ({d['hostapi_name']})" | |
for d in devices | |
if d["max_output_channels"] > 0 | |
] | |
input_devices_indices = [ | |
d["index"] for d in devices if d["max_input_channels"] > 0 | |
] | |
output_devices_indices = [ | |
d["index"] for d in devices if d["max_output_channels"] > 0 | |
] | |
return ( | |
input_devices, | |
output_devices, | |
input_devices_indices, | |
output_devices_indices, | |
) | |
def set_devices(self, input_device, output_device): | |
"""设置输出设备""" | |
( | |
input_devices, | |
output_devices, | |
input_device_indices, | |
output_device_indices, | |
) = self.get_devices() | |
sd.default.device[0] = input_device_indices[input_devices.index(input_device)] | |
sd.default.device[1] = output_device_indices[ | |
output_devices.index(output_device) | |
] | |
print("input device:" + str(sd.default.device[0]) + ":" + str(input_device)) | |
print("output device:" + str(sd.default.device[1]) + ":" + str(output_device)) | |
gui = GUI() | |