Spaces:
Runtime error
Runtime error
Upload 112 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- assets/Synthesizer_inputs.pth +3 -0
- assets/hubert/.gitignore +3 -0
- assets/hubert/hubert_inputs.pth +3 -0
- assets/pretrained/.gitignore +2 -0
- assets/pretrained_v2/.gitignore +2 -0
- assets/rmvpe/.gitignore +3 -0
- assets/rmvpe/rmvpe_inputs.pth +3 -0
- assets/uvr5_weights/.gitignore +2 -0
- assets/weights/.gitignore +2 -0
- infer/.DS_Store +0 -0
- infer/lib/audio.py +73 -0
- infer/lib/infer_pack/attentions.py +459 -0
- infer/lib/infer_pack/commons.py +172 -0
- infer/lib/infer_pack/models.py +1420 -0
- infer/lib/infer_pack/models_onnx.py +821 -0
- infer/lib/infer_pack/modules.py +615 -0
- infer/lib/infer_pack/modules/F0Predictor/DioF0Predictor.py +91 -0
- infer/lib/infer_pack/modules/F0Predictor/F0Predictor.py +16 -0
- infer/lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py +87 -0
- infer/lib/infer_pack/modules/F0Predictor/PMF0Predictor.py +98 -0
- infer/lib/infer_pack/modules/F0Predictor/__init__.py +0 -0
- infer/lib/infer_pack/onnx_inference.py +149 -0
- infer/lib/infer_pack/transforms.py +207 -0
- infer/lib/jit/__init__.py +163 -0
- infer/lib/jit/get_hubert.py +342 -0
- infer/lib/jit/get_rmvpe.py +12 -0
- infer/lib/jit/get_synthesizer.py +37 -0
- infer/lib/rmvpe.py +668 -0
- infer/lib/slicer2.py +260 -0
- infer/lib/train/data_utils.py +517 -0
- infer/lib/train/losses.py +58 -0
- infer/lib/train/mel_processing.py +132 -0
- infer/lib/train/process_ckpt.py +261 -0
- infer/lib/train/utils.py +478 -0
- infer/lib/uvr5_pack/lib_v5/dataset.py +183 -0
- infer/lib/uvr5_pack/lib_v5/layers.py +118 -0
- infer/lib/uvr5_pack/lib_v5/layers_123812KB .py +118 -0
- infer/lib/uvr5_pack/lib_v5/layers_123821KB.py +118 -0
- infer/lib/uvr5_pack/lib_v5/layers_33966KB.py +126 -0
- infer/lib/uvr5_pack/lib_v5/layers_537227KB.py +126 -0
- infer/lib/uvr5_pack/lib_v5/layers_537238KB.py +126 -0
- infer/lib/uvr5_pack/lib_v5/layers_new.py +125 -0
- infer/lib/uvr5_pack/lib_v5/model_param_init.py +69 -0
- infer/lib/uvr5_pack/lib_v5/modelparams/1band_sr16000_hl512.json +19 -0
- infer/lib/uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json +19 -0
- infer/lib/uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json +19 -0
- infer/lib/uvr5_pack/lib_v5/modelparams/1band_sr44100_hl1024.json +19 -0
- infer/lib/uvr5_pack/lib_v5/modelparams/1band_sr44100_hl256.json +19 -0
- infer/lib/uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json +19 -0
- infer/lib/uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512_cut.json +19 -0
assets/Synthesizer_inputs.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c5ae8cd034b02bbc325939e9b9debbedb43ee9d71a654daaff8804815bd957d
|
3 |
+
size 122495
|
assets/hubert/.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
*
|
2 |
+
!.gitignore
|
3 |
+
!hubert_inputs.pth
|
assets/hubert/hubert_inputs.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbd4741d4be8a71333170c0df5320f605a9d210b96547b391555da078167861f
|
3 |
+
size 169434
|
assets/pretrained/.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*
|
2 |
+
!.gitignore
|
assets/pretrained_v2/.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*
|
2 |
+
!.gitignore
|
assets/rmvpe/.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
*
|
2 |
+
!.gitignore
|
3 |
+
!rmvpe_inputs.pth
|
assets/rmvpe/rmvpe_inputs.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:339fcb7e1476b302e9aecef4a951e918c20852b2e871de5eea13b06e554e0a3a
|
3 |
+
size 33527
|
assets/uvr5_weights/.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*
|
2 |
+
!.gitignore
|
assets/weights/.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*
|
2 |
+
!.gitignore
|
infer/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
infer/lib/audio.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import traceback
|
3 |
+
|
4 |
+
import librosa
|
5 |
+
import numpy as np
|
6 |
+
import av
|
7 |
+
from io import BytesIO
|
8 |
+
|
9 |
+
|
10 |
+
def wav2(i, o, format):
|
11 |
+
inp = av.open(i, "rb")
|
12 |
+
if format == "m4a":
|
13 |
+
format = "mp4"
|
14 |
+
out = av.open(o, "wb", format=format)
|
15 |
+
if format == "ogg":
|
16 |
+
format = "libvorbis"
|
17 |
+
if format == "mp4":
|
18 |
+
format = "aac"
|
19 |
+
|
20 |
+
ostream = out.add_stream(format)
|
21 |
+
|
22 |
+
for frame in inp.decode(audio=0):
|
23 |
+
for p in ostream.encode(frame):
|
24 |
+
out.mux(p)
|
25 |
+
|
26 |
+
for p in ostream.encode(None):
|
27 |
+
out.mux(p)
|
28 |
+
|
29 |
+
out.close()
|
30 |
+
inp.close()
|
31 |
+
|
32 |
+
|
33 |
+
def audio2(i, o, format, sr):
|
34 |
+
inp = av.open(i, "rb")
|
35 |
+
out = av.open(o, "wb", format=format)
|
36 |
+
if format == "ogg":
|
37 |
+
format = "libvorbis"
|
38 |
+
if format == "f32le":
|
39 |
+
format = "pcm_f32le"
|
40 |
+
|
41 |
+
ostream = out.add_stream(format, channels=1)
|
42 |
+
ostream.sample_rate = sr
|
43 |
+
|
44 |
+
for frame in inp.decode(audio=0):
|
45 |
+
for p in ostream.encode(frame):
|
46 |
+
out.mux(p)
|
47 |
+
|
48 |
+
out.close()
|
49 |
+
inp.close()
|
50 |
+
|
51 |
+
|
52 |
+
def load_audio(file, sr):
|
53 |
+
file = (
|
54 |
+
file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
55 |
+
) # 防止小白拷路径头尾带了空格和"和回车
|
56 |
+
if os.path.exists(file) == False:
|
57 |
+
raise RuntimeError(
|
58 |
+
"You input a wrong audio path that does not exists, please fix it!"
|
59 |
+
)
|
60 |
+
try:
|
61 |
+
with open(file, "rb") as f:
|
62 |
+
with BytesIO() as out:
|
63 |
+
audio2(f, out, "f32le", sr)
|
64 |
+
return np.frombuffer(out.getvalue(), np.float32).flatten()
|
65 |
+
|
66 |
+
except AttributeError:
|
67 |
+
audio = file[1] / 32768.0
|
68 |
+
if len(audio.shape) == 2:
|
69 |
+
audio = np.mean(audio, -1)
|
70 |
+
return librosa.resample(audio, orig_sr=file[0], target_sr=16000)
|
71 |
+
|
72 |
+
except:
|
73 |
+
raise RuntimeError(traceback.format_exc())
|
infer/lib/infer_pack/attentions.py
ADDED
@@ -0,0 +1,459 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import functional as F
|
9 |
+
|
10 |
+
from infer.lib.infer_pack import commons, modules
|
11 |
+
from infer.lib.infer_pack.modules import LayerNorm
|
12 |
+
|
13 |
+
|
14 |
+
class Encoder(nn.Module):
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
hidden_channels,
|
18 |
+
filter_channels,
|
19 |
+
n_heads,
|
20 |
+
n_layers,
|
21 |
+
kernel_size=1,
|
22 |
+
p_dropout=0.0,
|
23 |
+
window_size=10,
|
24 |
+
**kwargs
|
25 |
+
):
|
26 |
+
super(Encoder, self).__init__()
|
27 |
+
self.hidden_channels = hidden_channels
|
28 |
+
self.filter_channels = filter_channels
|
29 |
+
self.n_heads = n_heads
|
30 |
+
self.n_layers = int(n_layers)
|
31 |
+
self.kernel_size = kernel_size
|
32 |
+
self.p_dropout = p_dropout
|
33 |
+
self.window_size = window_size
|
34 |
+
|
35 |
+
self.drop = nn.Dropout(p_dropout)
|
36 |
+
self.attn_layers = nn.ModuleList()
|
37 |
+
self.norm_layers_1 = nn.ModuleList()
|
38 |
+
self.ffn_layers = nn.ModuleList()
|
39 |
+
self.norm_layers_2 = nn.ModuleList()
|
40 |
+
for i in range(self.n_layers):
|
41 |
+
self.attn_layers.append(
|
42 |
+
MultiHeadAttention(
|
43 |
+
hidden_channels,
|
44 |
+
hidden_channels,
|
45 |
+
n_heads,
|
46 |
+
p_dropout=p_dropout,
|
47 |
+
window_size=window_size,
|
48 |
+
)
|
49 |
+
)
|
50 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
51 |
+
self.ffn_layers.append(
|
52 |
+
FFN(
|
53 |
+
hidden_channels,
|
54 |
+
hidden_channels,
|
55 |
+
filter_channels,
|
56 |
+
kernel_size,
|
57 |
+
p_dropout=p_dropout,
|
58 |
+
)
|
59 |
+
)
|
60 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
61 |
+
|
62 |
+
def forward(self, x, x_mask):
|
63 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
64 |
+
x = x * x_mask
|
65 |
+
zippep = zip(
|
66 |
+
self.attn_layers, self.norm_layers_1, self.ffn_layers, self.norm_layers_2
|
67 |
+
)
|
68 |
+
for attn_layers, norm_layers_1, ffn_layers, norm_layers_2 in zippep:
|
69 |
+
y = attn_layers(x, x, attn_mask)
|
70 |
+
y = self.drop(y)
|
71 |
+
x = norm_layers_1(x + y)
|
72 |
+
|
73 |
+
y = ffn_layers(x, x_mask)
|
74 |
+
y = self.drop(y)
|
75 |
+
x = norm_layers_2(x + y)
|
76 |
+
x = x * x_mask
|
77 |
+
return x
|
78 |
+
|
79 |
+
|
80 |
+
class Decoder(nn.Module):
|
81 |
+
def __init__(
|
82 |
+
self,
|
83 |
+
hidden_channels,
|
84 |
+
filter_channels,
|
85 |
+
n_heads,
|
86 |
+
n_layers,
|
87 |
+
kernel_size=1,
|
88 |
+
p_dropout=0.0,
|
89 |
+
proximal_bias=False,
|
90 |
+
proximal_init=True,
|
91 |
+
**kwargs
|
92 |
+
):
|
93 |
+
super(Decoder, self).__init__()
|
94 |
+
self.hidden_channels = hidden_channels
|
95 |
+
self.filter_channels = filter_channels
|
96 |
+
self.n_heads = n_heads
|
97 |
+
self.n_layers = n_layers
|
98 |
+
self.kernel_size = kernel_size
|
99 |
+
self.p_dropout = p_dropout
|
100 |
+
self.proximal_bias = proximal_bias
|
101 |
+
self.proximal_init = proximal_init
|
102 |
+
|
103 |
+
self.drop = nn.Dropout(p_dropout)
|
104 |
+
self.self_attn_layers = nn.ModuleList()
|
105 |
+
self.norm_layers_0 = nn.ModuleList()
|
106 |
+
self.encdec_attn_layers = nn.ModuleList()
|
107 |
+
self.norm_layers_1 = nn.ModuleList()
|
108 |
+
self.ffn_layers = nn.ModuleList()
|
109 |
+
self.norm_layers_2 = nn.ModuleList()
|
110 |
+
for i in range(self.n_layers):
|
111 |
+
self.self_attn_layers.append(
|
112 |
+
MultiHeadAttention(
|
113 |
+
hidden_channels,
|
114 |
+
hidden_channels,
|
115 |
+
n_heads,
|
116 |
+
p_dropout=p_dropout,
|
117 |
+
proximal_bias=proximal_bias,
|
118 |
+
proximal_init=proximal_init,
|
119 |
+
)
|
120 |
+
)
|
121 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
122 |
+
self.encdec_attn_layers.append(
|
123 |
+
MultiHeadAttention(
|
124 |
+
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
|
125 |
+
)
|
126 |
+
)
|
127 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
128 |
+
self.ffn_layers.append(
|
129 |
+
FFN(
|
130 |
+
hidden_channels,
|
131 |
+
hidden_channels,
|
132 |
+
filter_channels,
|
133 |
+
kernel_size,
|
134 |
+
p_dropout=p_dropout,
|
135 |
+
causal=True,
|
136 |
+
)
|
137 |
+
)
|
138 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
139 |
+
|
140 |
+
def forward(self, x, x_mask, h, h_mask):
|
141 |
+
"""
|
142 |
+
x: decoder input
|
143 |
+
h: encoder output
|
144 |
+
"""
|
145 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
146 |
+
device=x.device, dtype=x.dtype
|
147 |
+
)
|
148 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
149 |
+
x = x * x_mask
|
150 |
+
for i in range(self.n_layers):
|
151 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
152 |
+
y = self.drop(y)
|
153 |
+
x = self.norm_layers_0[i](x + y)
|
154 |
+
|
155 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
156 |
+
y = self.drop(y)
|
157 |
+
x = self.norm_layers_1[i](x + y)
|
158 |
+
|
159 |
+
y = self.ffn_layers[i](x, x_mask)
|
160 |
+
y = self.drop(y)
|
161 |
+
x = self.norm_layers_2[i](x + y)
|
162 |
+
x = x * x_mask
|
163 |
+
return x
|
164 |
+
|
165 |
+
|
166 |
+
class MultiHeadAttention(nn.Module):
|
167 |
+
def __init__(
|
168 |
+
self,
|
169 |
+
channels,
|
170 |
+
out_channels,
|
171 |
+
n_heads,
|
172 |
+
p_dropout=0.0,
|
173 |
+
window_size=None,
|
174 |
+
heads_share=True,
|
175 |
+
block_length=None,
|
176 |
+
proximal_bias=False,
|
177 |
+
proximal_init=False,
|
178 |
+
):
|
179 |
+
super(MultiHeadAttention, self).__init__()
|
180 |
+
assert channels % n_heads == 0
|
181 |
+
|
182 |
+
self.channels = channels
|
183 |
+
self.out_channels = out_channels
|
184 |
+
self.n_heads = n_heads
|
185 |
+
self.p_dropout = p_dropout
|
186 |
+
self.window_size = window_size
|
187 |
+
self.heads_share = heads_share
|
188 |
+
self.block_length = block_length
|
189 |
+
self.proximal_bias = proximal_bias
|
190 |
+
self.proximal_init = proximal_init
|
191 |
+
self.attn = None
|
192 |
+
|
193 |
+
self.k_channels = channels // n_heads
|
194 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
195 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
196 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
197 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
198 |
+
self.drop = nn.Dropout(p_dropout)
|
199 |
+
|
200 |
+
if window_size is not None:
|
201 |
+
n_heads_rel = 1 if heads_share else n_heads
|
202 |
+
rel_stddev = self.k_channels**-0.5
|
203 |
+
self.emb_rel_k = nn.Parameter(
|
204 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
205 |
+
* rel_stddev
|
206 |
+
)
|
207 |
+
self.emb_rel_v = nn.Parameter(
|
208 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
209 |
+
* rel_stddev
|
210 |
+
)
|
211 |
+
|
212 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
213 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
214 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
215 |
+
if proximal_init:
|
216 |
+
with torch.no_grad():
|
217 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
218 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
219 |
+
|
220 |
+
def forward(
|
221 |
+
self, x: torch.Tensor, c: torch.Tensor, attn_mask: Optional[torch.Tensor] = None
|
222 |
+
):
|
223 |
+
q = self.conv_q(x)
|
224 |
+
k = self.conv_k(c)
|
225 |
+
v = self.conv_v(c)
|
226 |
+
|
227 |
+
x, _ = self.attention(q, k, v, mask=attn_mask)
|
228 |
+
|
229 |
+
x = self.conv_o(x)
|
230 |
+
return x
|
231 |
+
|
232 |
+
def attention(
|
233 |
+
self,
|
234 |
+
query: torch.Tensor,
|
235 |
+
key: torch.Tensor,
|
236 |
+
value: torch.Tensor,
|
237 |
+
mask: Optional[torch.Tensor] = None,
|
238 |
+
):
|
239 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
240 |
+
b, d, t_s = key.size()
|
241 |
+
t_t = query.size(2)
|
242 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
243 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
244 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
245 |
+
|
246 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
247 |
+
if self.window_size is not None:
|
248 |
+
assert (
|
249 |
+
t_s == t_t
|
250 |
+
), "Relative attention is only available for self-attention."
|
251 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
252 |
+
rel_logits = self._matmul_with_relative_keys(
|
253 |
+
query / math.sqrt(self.k_channels), key_relative_embeddings
|
254 |
+
)
|
255 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
256 |
+
scores = scores + scores_local
|
257 |
+
if self.proximal_bias:
|
258 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
259 |
+
scores = scores + self._attention_bias_proximal(t_s).to(
|
260 |
+
device=scores.device, dtype=scores.dtype
|
261 |
+
)
|
262 |
+
if mask is not None:
|
263 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
264 |
+
if self.block_length is not None:
|
265 |
+
assert (
|
266 |
+
t_s == t_t
|
267 |
+
), "Local attention is only available for self-attention."
|
268 |
+
block_mask = (
|
269 |
+
torch.ones_like(scores)
|
270 |
+
.triu(-self.block_length)
|
271 |
+
.tril(self.block_length)
|
272 |
+
)
|
273 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
274 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
275 |
+
p_attn = self.drop(p_attn)
|
276 |
+
output = torch.matmul(p_attn, value)
|
277 |
+
if self.window_size is not None:
|
278 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
279 |
+
value_relative_embeddings = self._get_relative_embeddings(
|
280 |
+
self.emb_rel_v, t_s
|
281 |
+
)
|
282 |
+
output = output + self._matmul_with_relative_values(
|
283 |
+
relative_weights, value_relative_embeddings
|
284 |
+
)
|
285 |
+
output = (
|
286 |
+
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
287 |
+
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
288 |
+
return output, p_attn
|
289 |
+
|
290 |
+
def _matmul_with_relative_values(self, x, y):
|
291 |
+
"""
|
292 |
+
x: [b, h, l, m]
|
293 |
+
y: [h or 1, m, d]
|
294 |
+
ret: [b, h, l, d]
|
295 |
+
"""
|
296 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
297 |
+
return ret
|
298 |
+
|
299 |
+
def _matmul_with_relative_keys(self, x, y):
|
300 |
+
"""
|
301 |
+
x: [b, h, l, d]
|
302 |
+
y: [h or 1, m, d]
|
303 |
+
ret: [b, h, l, m]
|
304 |
+
"""
|
305 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
306 |
+
return ret
|
307 |
+
|
308 |
+
def _get_relative_embeddings(self, relative_embeddings, length: int):
|
309 |
+
max_relative_position = 2 * self.window_size + 1
|
310 |
+
# Pad first before slice to avoid using cond ops.
|
311 |
+
pad_length: int = max(length - (self.window_size + 1), 0)
|
312 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
313 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
314 |
+
if pad_length > 0:
|
315 |
+
padded_relative_embeddings = F.pad(
|
316 |
+
relative_embeddings,
|
317 |
+
# commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
318 |
+
[0, 0, pad_length, pad_length, 0, 0],
|
319 |
+
)
|
320 |
+
else:
|
321 |
+
padded_relative_embeddings = relative_embeddings
|
322 |
+
used_relative_embeddings = padded_relative_embeddings[
|
323 |
+
:, slice_start_position:slice_end_position
|
324 |
+
]
|
325 |
+
return used_relative_embeddings
|
326 |
+
|
327 |
+
def _relative_position_to_absolute_position(self, x):
|
328 |
+
"""
|
329 |
+
x: [b, h, l, 2*l-1]
|
330 |
+
ret: [b, h, l, l]
|
331 |
+
"""
|
332 |
+
batch, heads, length, _ = x.size()
|
333 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
334 |
+
x = F.pad(
|
335 |
+
x,
|
336 |
+
# commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]])
|
337 |
+
[0, 1, 0, 0, 0, 0, 0, 0],
|
338 |
+
)
|
339 |
+
|
340 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
341 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
342 |
+
x_flat = F.pad(
|
343 |
+
x_flat,
|
344 |
+
# commons.convert_pad_shape([[0, 0], [0, 0], [0, int(length) - 1]])
|
345 |
+
[0, int(length) - 1, 0, 0, 0, 0],
|
346 |
+
)
|
347 |
+
|
348 |
+
# Reshape and slice out the padded elements.
|
349 |
+
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
350 |
+
:, :, :length, length - 1 :
|
351 |
+
]
|
352 |
+
return x_final
|
353 |
+
|
354 |
+
def _absolute_position_to_relative_position(self, x):
|
355 |
+
"""
|
356 |
+
x: [b, h, l, l]
|
357 |
+
ret: [b, h, l, 2*l-1]
|
358 |
+
"""
|
359 |
+
batch, heads, length, _ = x.size()
|
360 |
+
# padd along column
|
361 |
+
x = F.pad(
|
362 |
+
x,
|
363 |
+
# commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, int(length) - 1]])
|
364 |
+
[0, int(length) - 1, 0, 0, 0, 0, 0, 0],
|
365 |
+
)
|
366 |
+
x_flat = x.view([batch, heads, int(length**2) + int(length * (length - 1))])
|
367 |
+
# add 0's in the beginning that will skew the elements after reshape
|
368 |
+
x_flat = F.pad(
|
369 |
+
x_flat,
|
370 |
+
# commons.convert_pad_shape([[0, 0], [0, 0], [int(length), 0]])
|
371 |
+
[length, 0, 0, 0, 0, 0],
|
372 |
+
)
|
373 |
+
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
374 |
+
return x_final
|
375 |
+
|
376 |
+
def _attention_bias_proximal(self, length: int):
|
377 |
+
"""Bias for self-attention to encourage attention to close positions.
|
378 |
+
Args:
|
379 |
+
length: an integer scalar.
|
380 |
+
Returns:
|
381 |
+
a Tensor with shape [1, 1, length, length]
|
382 |
+
"""
|
383 |
+
r = torch.arange(length, dtype=torch.float32)
|
384 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
385 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
386 |
+
|
387 |
+
|
388 |
+
class FFN(nn.Module):
|
389 |
+
def __init__(
|
390 |
+
self,
|
391 |
+
in_channels,
|
392 |
+
out_channels,
|
393 |
+
filter_channels,
|
394 |
+
kernel_size,
|
395 |
+
p_dropout=0.0,
|
396 |
+
activation: str = None,
|
397 |
+
causal=False,
|
398 |
+
):
|
399 |
+
super(FFN, self).__init__()
|
400 |
+
self.in_channels = in_channels
|
401 |
+
self.out_channels = out_channels
|
402 |
+
self.filter_channels = filter_channels
|
403 |
+
self.kernel_size = kernel_size
|
404 |
+
self.p_dropout = p_dropout
|
405 |
+
self.activation = activation
|
406 |
+
self.causal = causal
|
407 |
+
self.is_activation = True if activation == "gelu" else False
|
408 |
+
# if causal:
|
409 |
+
# self.padding = self._causal_padding
|
410 |
+
# else:
|
411 |
+
# self.padding = self._same_padding
|
412 |
+
|
413 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
414 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
415 |
+
self.drop = nn.Dropout(p_dropout)
|
416 |
+
|
417 |
+
def padding(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor:
|
418 |
+
if self.causal:
|
419 |
+
padding = self._causal_padding(x * x_mask)
|
420 |
+
else:
|
421 |
+
padding = self._same_padding(x * x_mask)
|
422 |
+
return padding
|
423 |
+
|
424 |
+
def forward(self, x: torch.Tensor, x_mask: torch.Tensor):
|
425 |
+
x = self.conv_1(self.padding(x, x_mask))
|
426 |
+
if self.is_activation:
|
427 |
+
x = x * torch.sigmoid(1.702 * x)
|
428 |
+
else:
|
429 |
+
x = torch.relu(x)
|
430 |
+
x = self.drop(x)
|
431 |
+
|
432 |
+
x = self.conv_2(self.padding(x, x_mask))
|
433 |
+
return x * x_mask
|
434 |
+
|
435 |
+
def _causal_padding(self, x):
|
436 |
+
if self.kernel_size == 1:
|
437 |
+
return x
|
438 |
+
pad_l: int = self.kernel_size - 1
|
439 |
+
pad_r: int = 0
|
440 |
+
# padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
441 |
+
x = F.pad(
|
442 |
+
x,
|
443 |
+
# commons.convert_pad_shape(padding)
|
444 |
+
[pad_l, pad_r, 0, 0, 0, 0],
|
445 |
+
)
|
446 |
+
return x
|
447 |
+
|
448 |
+
def _same_padding(self, x):
|
449 |
+
if self.kernel_size == 1:
|
450 |
+
return x
|
451 |
+
pad_l: int = (self.kernel_size - 1) // 2
|
452 |
+
pad_r: int = self.kernel_size // 2
|
453 |
+
# padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
454 |
+
x = F.pad(
|
455 |
+
x,
|
456 |
+
# commons.convert_pad_shape(padding)
|
457 |
+
[pad_l, pad_r, 0, 0, 0, 0],
|
458 |
+
)
|
459 |
+
return x
|
infer/lib/infer_pack/commons.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional
|
2 |
+
import math
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
|
10 |
+
def init_weights(m, mean=0.0, std=0.01):
|
11 |
+
classname = m.__class__.__name__
|
12 |
+
if classname.find("Conv") != -1:
|
13 |
+
m.weight.data.normal_(mean, std)
|
14 |
+
|
15 |
+
|
16 |
+
def get_padding(kernel_size, dilation=1):
|
17 |
+
return int((kernel_size * dilation - dilation) / 2)
|
18 |
+
|
19 |
+
|
20 |
+
# def convert_pad_shape(pad_shape):
|
21 |
+
# l = pad_shape[::-1]
|
22 |
+
# pad_shape = [item for sublist in l for item in sublist]
|
23 |
+
# return pad_shape
|
24 |
+
|
25 |
+
|
26 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
27 |
+
"""KL(P||Q)"""
|
28 |
+
kl = (logs_q - logs_p) - 0.5
|
29 |
+
kl += (
|
30 |
+
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
31 |
+
)
|
32 |
+
return kl
|
33 |
+
|
34 |
+
|
35 |
+
def rand_gumbel(shape):
|
36 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
37 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
38 |
+
return -torch.log(-torch.log(uniform_samples))
|
39 |
+
|
40 |
+
|
41 |
+
def rand_gumbel_like(x):
|
42 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
43 |
+
return g
|
44 |
+
|
45 |
+
|
46 |
+
def slice_segments(x, ids_str, segment_size=4):
|
47 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
48 |
+
for i in range(x.size(0)):
|
49 |
+
idx_str = ids_str[i]
|
50 |
+
idx_end = idx_str + segment_size
|
51 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
52 |
+
return ret
|
53 |
+
|
54 |
+
|
55 |
+
def slice_segments2(x, ids_str, segment_size=4):
|
56 |
+
ret = torch.zeros_like(x[:, :segment_size])
|
57 |
+
for i in range(x.size(0)):
|
58 |
+
idx_str = ids_str[i]
|
59 |
+
idx_end = idx_str + segment_size
|
60 |
+
ret[i] = x[i, idx_str:idx_end]
|
61 |
+
return ret
|
62 |
+
|
63 |
+
|
64 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
65 |
+
b, d, t = x.size()
|
66 |
+
if x_lengths is None:
|
67 |
+
x_lengths = t
|
68 |
+
ids_str_max = x_lengths - segment_size + 1
|
69 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
70 |
+
ret = slice_segments(x, ids_str, segment_size)
|
71 |
+
return ret, ids_str
|
72 |
+
|
73 |
+
|
74 |
+
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
75 |
+
position = torch.arange(length, dtype=torch.float)
|
76 |
+
num_timescales = channels // 2
|
77 |
+
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
78 |
+
num_timescales - 1
|
79 |
+
)
|
80 |
+
inv_timescales = min_timescale * torch.exp(
|
81 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
82 |
+
)
|
83 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
84 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
85 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
86 |
+
signal = signal.view(1, channels, length)
|
87 |
+
return signal
|
88 |
+
|
89 |
+
|
90 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
91 |
+
b, channels, length = x.size()
|
92 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
93 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
94 |
+
|
95 |
+
|
96 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
97 |
+
b, channels, length = x.size()
|
98 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
99 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
100 |
+
|
101 |
+
|
102 |
+
def subsequent_mask(length):
|
103 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
104 |
+
return mask
|
105 |
+
|
106 |
+
|
107 |
+
@torch.jit.script
|
108 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
109 |
+
n_channels_int = n_channels[0]
|
110 |
+
in_act = input_a + input_b
|
111 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
112 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
113 |
+
acts = t_act * s_act
|
114 |
+
return acts
|
115 |
+
|
116 |
+
|
117 |
+
# def convert_pad_shape(pad_shape):
|
118 |
+
# l = pad_shape[::-1]
|
119 |
+
# pad_shape = [item for sublist in l for item in sublist]
|
120 |
+
# return pad_shape
|
121 |
+
|
122 |
+
|
123 |
+
def convert_pad_shape(pad_shape: List[List[int]]) -> List[int]:
|
124 |
+
return torch.tensor(pad_shape).flip(0).reshape(-1).int().tolist()
|
125 |
+
|
126 |
+
|
127 |
+
def shift_1d(x):
|
128 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
129 |
+
return x
|
130 |
+
|
131 |
+
|
132 |
+
def sequence_mask(length: torch.Tensor, max_length: Optional[int] = None):
|
133 |
+
if max_length is None:
|
134 |
+
max_length = length.max()
|
135 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
136 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
137 |
+
|
138 |
+
|
139 |
+
def generate_path(duration, mask):
|
140 |
+
"""
|
141 |
+
duration: [b, 1, t_x]
|
142 |
+
mask: [b, 1, t_y, t_x]
|
143 |
+
"""
|
144 |
+
device = duration.device
|
145 |
+
|
146 |
+
b, _, t_y, t_x = mask.shape
|
147 |
+
cum_duration = torch.cumsum(duration, -1)
|
148 |
+
|
149 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
150 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
151 |
+
path = path.view(b, t_x, t_y)
|
152 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
153 |
+
path = path.unsqueeze(1).transpose(2, 3) * mask
|
154 |
+
return path
|
155 |
+
|
156 |
+
|
157 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
158 |
+
if isinstance(parameters, torch.Tensor):
|
159 |
+
parameters = [parameters]
|
160 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
161 |
+
norm_type = float(norm_type)
|
162 |
+
if clip_value is not None:
|
163 |
+
clip_value = float(clip_value)
|
164 |
+
|
165 |
+
total_norm = 0
|
166 |
+
for p in parameters:
|
167 |
+
param_norm = p.grad.data.norm(norm_type)
|
168 |
+
total_norm += param_norm.item() ** norm_type
|
169 |
+
if clip_value is not None:
|
170 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
171 |
+
total_norm = total_norm ** (1.0 / norm_type)
|
172 |
+
return total_norm
|
infer/lib/infer_pack/models.py
ADDED
@@ -0,0 +1,1420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import logging
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
logger = logging.getLogger(__name__)
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from torch import nn
|
10 |
+
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
|
11 |
+
from torch.nn import functional as F
|
12 |
+
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
13 |
+
|
14 |
+
from infer.lib.infer_pack import attentions, commons, modules
|
15 |
+
from infer.lib.infer_pack.commons import get_padding, init_weights
|
16 |
+
|
17 |
+
has_xpu = bool(hasattr(torch, "xpu") and torch.xpu.is_available())
|
18 |
+
|
19 |
+
|
20 |
+
class TextEncoder256(nn.Module):
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
out_channels,
|
24 |
+
hidden_channels,
|
25 |
+
filter_channels,
|
26 |
+
n_heads,
|
27 |
+
n_layers,
|
28 |
+
kernel_size,
|
29 |
+
p_dropout,
|
30 |
+
f0=True,
|
31 |
+
):
|
32 |
+
super(TextEncoder256, self).__init__()
|
33 |
+
self.out_channels = out_channels
|
34 |
+
self.hidden_channels = hidden_channels
|
35 |
+
self.filter_channels = filter_channels
|
36 |
+
self.n_heads = n_heads
|
37 |
+
self.n_layers = n_layers
|
38 |
+
self.kernel_size = kernel_size
|
39 |
+
self.p_dropout = float(p_dropout)
|
40 |
+
self.emb_phone = nn.Linear(256, hidden_channels)
|
41 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
42 |
+
if f0 == True:
|
43 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
44 |
+
self.encoder = attentions.Encoder(
|
45 |
+
hidden_channels,
|
46 |
+
filter_channels,
|
47 |
+
n_heads,
|
48 |
+
n_layers,
|
49 |
+
kernel_size,
|
50 |
+
float(p_dropout),
|
51 |
+
)
|
52 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
53 |
+
|
54 |
+
def forward(
|
55 |
+
self, phone: torch.Tensor, pitch: Optional[torch.Tensor], lengths: torch.Tensor
|
56 |
+
):
|
57 |
+
if pitch is None:
|
58 |
+
x = self.emb_phone(phone)
|
59 |
+
else:
|
60 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
61 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
62 |
+
x = self.lrelu(x)
|
63 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
64 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
65 |
+
x.dtype
|
66 |
+
)
|
67 |
+
x = self.encoder(x * x_mask, x_mask)
|
68 |
+
stats = self.proj(x) * x_mask
|
69 |
+
|
70 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
71 |
+
return m, logs, x_mask
|
72 |
+
|
73 |
+
|
74 |
+
class TextEncoder768(nn.Module):
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
out_channels,
|
78 |
+
hidden_channels,
|
79 |
+
filter_channels,
|
80 |
+
n_heads,
|
81 |
+
n_layers,
|
82 |
+
kernel_size,
|
83 |
+
p_dropout,
|
84 |
+
f0=True,
|
85 |
+
):
|
86 |
+
super(TextEncoder768, self).__init__()
|
87 |
+
self.out_channels = out_channels
|
88 |
+
self.hidden_channels = hidden_channels
|
89 |
+
self.filter_channels = filter_channels
|
90 |
+
self.n_heads = n_heads
|
91 |
+
self.n_layers = n_layers
|
92 |
+
self.kernel_size = kernel_size
|
93 |
+
self.p_dropout = float(p_dropout)
|
94 |
+
self.emb_phone = nn.Linear(768, hidden_channels)
|
95 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
96 |
+
if f0 == True:
|
97 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
98 |
+
self.encoder = attentions.Encoder(
|
99 |
+
hidden_channels,
|
100 |
+
filter_channels,
|
101 |
+
n_heads,
|
102 |
+
n_layers,
|
103 |
+
kernel_size,
|
104 |
+
float(p_dropout),
|
105 |
+
)
|
106 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
107 |
+
|
108 |
+
def forward(self, phone: torch.Tensor, pitch: torch.Tensor, lengths: torch.Tensor):
|
109 |
+
if pitch is None:
|
110 |
+
x = self.emb_phone(phone)
|
111 |
+
else:
|
112 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
113 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
114 |
+
x = self.lrelu(x)
|
115 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
116 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
117 |
+
x.dtype
|
118 |
+
)
|
119 |
+
x = self.encoder(x * x_mask, x_mask)
|
120 |
+
stats = self.proj(x) * x_mask
|
121 |
+
|
122 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
123 |
+
return m, logs, x_mask
|
124 |
+
|
125 |
+
|
126 |
+
class ResidualCouplingBlock(nn.Module):
|
127 |
+
def __init__(
|
128 |
+
self,
|
129 |
+
channels,
|
130 |
+
hidden_channels,
|
131 |
+
kernel_size,
|
132 |
+
dilation_rate,
|
133 |
+
n_layers,
|
134 |
+
n_flows=4,
|
135 |
+
gin_channels=0,
|
136 |
+
):
|
137 |
+
super(ResidualCouplingBlock, self).__init__()
|
138 |
+
self.channels = channels
|
139 |
+
self.hidden_channels = hidden_channels
|
140 |
+
self.kernel_size = kernel_size
|
141 |
+
self.dilation_rate = dilation_rate
|
142 |
+
self.n_layers = n_layers
|
143 |
+
self.n_flows = n_flows
|
144 |
+
self.gin_channels = gin_channels
|
145 |
+
|
146 |
+
self.flows = nn.ModuleList()
|
147 |
+
for i in range(n_flows):
|
148 |
+
self.flows.append(
|
149 |
+
modules.ResidualCouplingLayer(
|
150 |
+
channels,
|
151 |
+
hidden_channels,
|
152 |
+
kernel_size,
|
153 |
+
dilation_rate,
|
154 |
+
n_layers,
|
155 |
+
gin_channels=gin_channels,
|
156 |
+
mean_only=True,
|
157 |
+
)
|
158 |
+
)
|
159 |
+
self.flows.append(modules.Flip())
|
160 |
+
|
161 |
+
def forward(
|
162 |
+
self,
|
163 |
+
x: torch.Tensor,
|
164 |
+
x_mask: torch.Tensor,
|
165 |
+
g: Optional[torch.Tensor] = None,
|
166 |
+
reverse: bool = False,
|
167 |
+
):
|
168 |
+
if not reverse:
|
169 |
+
for flow in self.flows:
|
170 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
171 |
+
else:
|
172 |
+
for flow in self.flows[::-1]:
|
173 |
+
x, _ = flow.forward(x, x_mask, g=g, reverse=reverse)
|
174 |
+
return x
|
175 |
+
|
176 |
+
def remove_weight_norm(self):
|
177 |
+
for i in range(self.n_flows):
|
178 |
+
self.flows[i * 2].remove_weight_norm()
|
179 |
+
|
180 |
+
def __prepare_scriptable__(self):
|
181 |
+
for i in range(self.n_flows):
|
182 |
+
for hook in self.flows[i * 2]._forward_pre_hooks.values():
|
183 |
+
if (
|
184 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
185 |
+
and hook.__class__.__name__ == "WeightNorm"
|
186 |
+
):
|
187 |
+
torch.nn.utils.remove_weight_norm(self.flows[i * 2])
|
188 |
+
|
189 |
+
return self
|
190 |
+
|
191 |
+
|
192 |
+
class PosteriorEncoder(nn.Module):
|
193 |
+
def __init__(
|
194 |
+
self,
|
195 |
+
in_channels,
|
196 |
+
out_channels,
|
197 |
+
hidden_channels,
|
198 |
+
kernel_size,
|
199 |
+
dilation_rate,
|
200 |
+
n_layers,
|
201 |
+
gin_channels=0,
|
202 |
+
):
|
203 |
+
super(PosteriorEncoder, self).__init__()
|
204 |
+
self.in_channels = in_channels
|
205 |
+
self.out_channels = out_channels
|
206 |
+
self.hidden_channels = hidden_channels
|
207 |
+
self.kernel_size = kernel_size
|
208 |
+
self.dilation_rate = dilation_rate
|
209 |
+
self.n_layers = n_layers
|
210 |
+
self.gin_channels = gin_channels
|
211 |
+
|
212 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
213 |
+
self.enc = modules.WN(
|
214 |
+
hidden_channels,
|
215 |
+
kernel_size,
|
216 |
+
dilation_rate,
|
217 |
+
n_layers,
|
218 |
+
gin_channels=gin_channels,
|
219 |
+
)
|
220 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
221 |
+
|
222 |
+
def forward(
|
223 |
+
self, x: torch.Tensor, x_lengths: torch.Tensor, g: Optional[torch.Tensor] = None
|
224 |
+
):
|
225 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
226 |
+
x.dtype
|
227 |
+
)
|
228 |
+
x = self.pre(x) * x_mask
|
229 |
+
x = self.enc(x, x_mask, g=g)
|
230 |
+
stats = self.proj(x) * x_mask
|
231 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
232 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
233 |
+
return z, m, logs, x_mask
|
234 |
+
|
235 |
+
def remove_weight_norm(self):
|
236 |
+
self.enc.remove_weight_norm()
|
237 |
+
|
238 |
+
def __prepare_scriptable__(self):
|
239 |
+
for hook in self.enc._forward_pre_hooks.values():
|
240 |
+
if (
|
241 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
242 |
+
and hook.__class__.__name__ == "WeightNorm"
|
243 |
+
):
|
244 |
+
torch.nn.utils.remove_weight_norm(self.enc)
|
245 |
+
return self
|
246 |
+
|
247 |
+
|
248 |
+
class Generator(torch.nn.Module):
|
249 |
+
def __init__(
|
250 |
+
self,
|
251 |
+
initial_channel,
|
252 |
+
resblock,
|
253 |
+
resblock_kernel_sizes,
|
254 |
+
resblock_dilation_sizes,
|
255 |
+
upsample_rates,
|
256 |
+
upsample_initial_channel,
|
257 |
+
upsample_kernel_sizes,
|
258 |
+
gin_channels=0,
|
259 |
+
):
|
260 |
+
super(Generator, self).__init__()
|
261 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
262 |
+
self.num_upsamples = len(upsample_rates)
|
263 |
+
self.conv_pre = Conv1d(
|
264 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
265 |
+
)
|
266 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
267 |
+
|
268 |
+
self.ups = nn.ModuleList()
|
269 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
270 |
+
self.ups.append(
|
271 |
+
weight_norm(
|
272 |
+
ConvTranspose1d(
|
273 |
+
upsample_initial_channel // (2**i),
|
274 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
275 |
+
k,
|
276 |
+
u,
|
277 |
+
padding=(k - u) // 2,
|
278 |
+
)
|
279 |
+
)
|
280 |
+
)
|
281 |
+
|
282 |
+
self.resblocks = nn.ModuleList()
|
283 |
+
for i in range(len(self.ups)):
|
284 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
285 |
+
for j, (k, d) in enumerate(
|
286 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
287 |
+
):
|
288 |
+
self.resblocks.append(resblock(ch, k, d))
|
289 |
+
|
290 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
291 |
+
self.ups.apply(init_weights)
|
292 |
+
|
293 |
+
if gin_channels != 0:
|
294 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
295 |
+
|
296 |
+
def forward(self, x: torch.Tensor, g: Optional[torch.Tensor] = None):
|
297 |
+
x = self.conv_pre(x)
|
298 |
+
if g is not None:
|
299 |
+
x = x + self.cond(g)
|
300 |
+
|
301 |
+
for i in range(self.num_upsamples):
|
302 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
303 |
+
x = self.ups[i](x)
|
304 |
+
xs = None
|
305 |
+
for j in range(self.num_kernels):
|
306 |
+
if xs is None:
|
307 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
308 |
+
else:
|
309 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
310 |
+
x = xs / self.num_kernels
|
311 |
+
x = F.leaky_relu(x)
|
312 |
+
x = self.conv_post(x)
|
313 |
+
x = torch.tanh(x)
|
314 |
+
|
315 |
+
return x
|
316 |
+
|
317 |
+
def __prepare_scriptable__(self):
|
318 |
+
for l in self.ups:
|
319 |
+
for hook in l._forward_pre_hooks.values():
|
320 |
+
# The hook we want to remove is an instance of WeightNorm class, so
|
321 |
+
# normally we would do `if isinstance(...)` but this class is not accessible
|
322 |
+
# because of shadowing, so we check the module name directly.
|
323 |
+
# https://github.com/pytorch/pytorch/blob/be0ca00c5ce260eb5bcec3237357f7a30cc08983/torch/nn/utils/__init__.py#L3
|
324 |
+
if (
|
325 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
326 |
+
and hook.__class__.__name__ == "WeightNorm"
|
327 |
+
):
|
328 |
+
torch.nn.utils.remove_weight_norm(l)
|
329 |
+
|
330 |
+
for l in self.resblocks:
|
331 |
+
for hook in l._forward_pre_hooks.values():
|
332 |
+
if (
|
333 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
334 |
+
and hook.__class__.__name__ == "WeightNorm"
|
335 |
+
):
|
336 |
+
torch.nn.utils.remove_weight_norm(l)
|
337 |
+
return self
|
338 |
+
|
339 |
+
def remove_weight_norm(self):
|
340 |
+
for l in self.ups:
|
341 |
+
remove_weight_norm(l)
|
342 |
+
for l in self.resblocks:
|
343 |
+
l.remove_weight_norm()
|
344 |
+
|
345 |
+
|
346 |
+
class SineGen(torch.nn.Module):
|
347 |
+
"""Definition of sine generator
|
348 |
+
SineGen(samp_rate, harmonic_num = 0,
|
349 |
+
sine_amp = 0.1, noise_std = 0.003,
|
350 |
+
voiced_threshold = 0,
|
351 |
+
flag_for_pulse=False)
|
352 |
+
samp_rate: sampling rate in Hz
|
353 |
+
harmonic_num: number of harmonic overtones (default 0)
|
354 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
355 |
+
noise_std: std of Gaussian noise (default 0.003)
|
356 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
357 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
358 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
359 |
+
segment is always sin(torch.pi) or cos(0)
|
360 |
+
"""
|
361 |
+
|
362 |
+
def __init__(
|
363 |
+
self,
|
364 |
+
samp_rate,
|
365 |
+
harmonic_num=0,
|
366 |
+
sine_amp=0.1,
|
367 |
+
noise_std=0.003,
|
368 |
+
voiced_threshold=0,
|
369 |
+
flag_for_pulse=False,
|
370 |
+
):
|
371 |
+
super(SineGen, self).__init__()
|
372 |
+
self.sine_amp = sine_amp
|
373 |
+
self.noise_std = noise_std
|
374 |
+
self.harmonic_num = harmonic_num
|
375 |
+
self.dim = self.harmonic_num + 1
|
376 |
+
self.sampling_rate = samp_rate
|
377 |
+
self.voiced_threshold = voiced_threshold
|
378 |
+
|
379 |
+
def _f02uv(self, f0):
|
380 |
+
# generate uv signal
|
381 |
+
uv = torch.ones_like(f0)
|
382 |
+
uv = uv * (f0 > self.voiced_threshold)
|
383 |
+
if uv.device.type == "privateuseone": # for DirectML
|
384 |
+
uv = uv.float()
|
385 |
+
return uv
|
386 |
+
|
387 |
+
def forward(self, f0: torch.Tensor, upp: int):
|
388 |
+
"""sine_tensor, uv = forward(f0)
|
389 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
390 |
+
f0 for unvoiced steps should be 0
|
391 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
392 |
+
output uv: tensor(batchsize=1, length, 1)
|
393 |
+
"""
|
394 |
+
with torch.no_grad():
|
395 |
+
f0 = f0[:, None].transpose(1, 2)
|
396 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
397 |
+
# fundamental component
|
398 |
+
f0_buf[:, :, 0] = f0[:, :, 0]
|
399 |
+
for idx in range(self.harmonic_num):
|
400 |
+
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
|
401 |
+
idx + 2
|
402 |
+
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
403 |
+
rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
|
404 |
+
rand_ini = torch.rand(
|
405 |
+
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
|
406 |
+
)
|
407 |
+
rand_ini[:, 0] = 0
|
408 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
409 |
+
tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
|
410 |
+
tmp_over_one *= upp
|
411 |
+
tmp_over_one = F.interpolate(
|
412 |
+
tmp_over_one.transpose(2, 1),
|
413 |
+
scale_factor=float(upp),
|
414 |
+
mode="linear",
|
415 |
+
align_corners=True,
|
416 |
+
).transpose(2, 1)
|
417 |
+
rad_values = F.interpolate(
|
418 |
+
rad_values.transpose(2, 1), scale_factor=float(upp), mode="nearest"
|
419 |
+
).transpose(
|
420 |
+
2, 1
|
421 |
+
) #######
|
422 |
+
tmp_over_one %= 1
|
423 |
+
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
424 |
+
cumsum_shift = torch.zeros_like(rad_values)
|
425 |
+
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
426 |
+
sine_waves = torch.sin(
|
427 |
+
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * torch.pi
|
428 |
+
)
|
429 |
+
sine_waves = sine_waves * self.sine_amp
|
430 |
+
uv = self._f02uv(f0)
|
431 |
+
uv = F.interpolate(
|
432 |
+
uv.transpose(2, 1), scale_factor=float(upp), mode="nearest"
|
433 |
+
).transpose(2, 1)
|
434 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
435 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
436 |
+
sine_waves = sine_waves * uv + noise
|
437 |
+
return sine_waves, uv, noise
|
438 |
+
|
439 |
+
|
440 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
441 |
+
"""SourceModule for hn-nsf
|
442 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
443 |
+
add_noise_std=0.003, voiced_threshod=0)
|
444 |
+
sampling_rate: sampling_rate in Hz
|
445 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
446 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
447 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
448 |
+
note that amplitude of noise in unvoiced is decided
|
449 |
+
by sine_amp
|
450 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
451 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
452 |
+
F0_sampled (batchsize, length, 1)
|
453 |
+
Sine_source (batchsize, length, 1)
|
454 |
+
noise_source (batchsize, length 1)
|
455 |
+
uv (batchsize, length, 1)
|
456 |
+
"""
|
457 |
+
|
458 |
+
def __init__(
|
459 |
+
self,
|
460 |
+
sampling_rate,
|
461 |
+
harmonic_num=0,
|
462 |
+
sine_amp=0.1,
|
463 |
+
add_noise_std=0.003,
|
464 |
+
voiced_threshod=0,
|
465 |
+
is_half=True,
|
466 |
+
):
|
467 |
+
super(SourceModuleHnNSF, self).__init__()
|
468 |
+
|
469 |
+
self.sine_amp = sine_amp
|
470 |
+
self.noise_std = add_noise_std
|
471 |
+
self.is_half = is_half
|
472 |
+
# to produce sine waveforms
|
473 |
+
self.l_sin_gen = SineGen(
|
474 |
+
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
|
475 |
+
)
|
476 |
+
|
477 |
+
# to merge source harmonics into a single excitation
|
478 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
479 |
+
self.l_tanh = torch.nn.Tanh()
|
480 |
+
# self.ddtype:int = -1
|
481 |
+
|
482 |
+
def forward(self, x: torch.Tensor, upp: int = 1):
|
483 |
+
# if self.ddtype ==-1:
|
484 |
+
# self.ddtype = self.l_linear.weight.dtype
|
485 |
+
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
|
486 |
+
# print(x.dtype,sine_wavs.dtype,self.l_linear.weight.dtype)
|
487 |
+
# if self.is_half:
|
488 |
+
# sine_wavs = sine_wavs.half()
|
489 |
+
# sine_merge = self.l_tanh(self.l_linear(sine_wavs.to(x)))
|
490 |
+
# print(sine_wavs.dtype,self.ddtype)
|
491 |
+
# if sine_wavs.dtype != self.l_linear.weight.dtype:
|
492 |
+
sine_wavs = sine_wavs.to(dtype=self.l_linear.weight.dtype)
|
493 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
494 |
+
return sine_merge, None, None # noise, uv
|
495 |
+
|
496 |
+
|
497 |
+
class GeneratorNSF(torch.nn.Module):
|
498 |
+
def __init__(
|
499 |
+
self,
|
500 |
+
initial_channel,
|
501 |
+
resblock,
|
502 |
+
resblock_kernel_sizes,
|
503 |
+
resblock_dilation_sizes,
|
504 |
+
upsample_rates,
|
505 |
+
upsample_initial_channel,
|
506 |
+
upsample_kernel_sizes,
|
507 |
+
gin_channels,
|
508 |
+
sr,
|
509 |
+
is_half=False,
|
510 |
+
):
|
511 |
+
super(GeneratorNSF, self).__init__()
|
512 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
513 |
+
self.num_upsamples = len(upsample_rates)
|
514 |
+
|
515 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=math.prod(upsample_rates))
|
516 |
+
self.m_source = SourceModuleHnNSF(
|
517 |
+
sampling_rate=sr, harmonic_num=0, is_half=is_half
|
518 |
+
)
|
519 |
+
self.noise_convs = nn.ModuleList()
|
520 |
+
self.conv_pre = Conv1d(
|
521 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
522 |
+
)
|
523 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
524 |
+
|
525 |
+
self.ups = nn.ModuleList()
|
526 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
527 |
+
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
528 |
+
self.ups.append(
|
529 |
+
weight_norm(
|
530 |
+
ConvTranspose1d(
|
531 |
+
upsample_initial_channel // (2**i),
|
532 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
533 |
+
k,
|
534 |
+
u,
|
535 |
+
padding=(k - u) // 2,
|
536 |
+
)
|
537 |
+
)
|
538 |
+
)
|
539 |
+
if i + 1 < len(upsample_rates):
|
540 |
+
stride_f0 = math.prod(upsample_rates[i + 1 :])
|
541 |
+
self.noise_convs.append(
|
542 |
+
Conv1d(
|
543 |
+
1,
|
544 |
+
c_cur,
|
545 |
+
kernel_size=stride_f0 * 2,
|
546 |
+
stride=stride_f0,
|
547 |
+
padding=stride_f0 // 2,
|
548 |
+
)
|
549 |
+
)
|
550 |
+
else:
|
551 |
+
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
552 |
+
|
553 |
+
self.resblocks = nn.ModuleList()
|
554 |
+
for i in range(len(self.ups)):
|
555 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
556 |
+
for j, (k, d) in enumerate(
|
557 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
558 |
+
):
|
559 |
+
self.resblocks.append(resblock(ch, k, d))
|
560 |
+
|
561 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
562 |
+
self.ups.apply(init_weights)
|
563 |
+
|
564 |
+
if gin_channels != 0:
|
565 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
566 |
+
|
567 |
+
self.upp = math.prod(upsample_rates)
|
568 |
+
|
569 |
+
self.lrelu_slope = modules.LRELU_SLOPE
|
570 |
+
|
571 |
+
def forward(self, x, f0, g: Optional[torch.Tensor] = None):
|
572 |
+
har_source, noi_source, uv = self.m_source(f0, self.upp)
|
573 |
+
har_source = har_source.transpose(1, 2)
|
574 |
+
x = self.conv_pre(x)
|
575 |
+
if g is not None:
|
576 |
+
x = x + self.cond(g)
|
577 |
+
# torch.jit.script() does not support direct indexing of torch modules
|
578 |
+
# That's why I wrote this
|
579 |
+
for i, (ups, noise_convs) in enumerate(zip(self.ups, self.noise_convs)):
|
580 |
+
if i < self.num_upsamples:
|
581 |
+
x = F.leaky_relu(x, self.lrelu_slope)
|
582 |
+
x = ups(x)
|
583 |
+
x_source = noise_convs(har_source)
|
584 |
+
x = x + x_source
|
585 |
+
xs: Optional[torch.Tensor] = None
|
586 |
+
l = [i * self.num_kernels + j for j in range(self.num_kernels)]
|
587 |
+
for j, resblock in enumerate(self.resblocks):
|
588 |
+
if j in l:
|
589 |
+
if xs is None:
|
590 |
+
xs = resblock(x)
|
591 |
+
else:
|
592 |
+
xs += resblock(x)
|
593 |
+
# This assertion cannot be ignored! \
|
594 |
+
# If ignored, it will cause torch.jit.script() compilation errors
|
595 |
+
assert isinstance(xs, torch.Tensor)
|
596 |
+
x = xs / self.num_kernels
|
597 |
+
x = F.leaky_relu(x)
|
598 |
+
x = self.conv_post(x)
|
599 |
+
x = torch.tanh(x)
|
600 |
+
return x
|
601 |
+
|
602 |
+
def remove_weight_norm(self):
|
603 |
+
for l in self.ups:
|
604 |
+
remove_weight_norm(l)
|
605 |
+
for l in self.resblocks:
|
606 |
+
l.remove_weight_norm()
|
607 |
+
|
608 |
+
def __prepare_scriptable__(self):
|
609 |
+
for l in self.ups:
|
610 |
+
for hook in l._forward_pre_hooks.values():
|
611 |
+
# The hook we want to remove is an instance of WeightNorm class, so
|
612 |
+
# normally we would do `if isinstance(...)` but this class is not accessible
|
613 |
+
# because of shadowing, so we check the module name directly.
|
614 |
+
# https://github.com/pytorch/pytorch/blob/be0ca00c5ce260eb5bcec3237357f7a30cc08983/torch/nn/utils/__init__.py#L3
|
615 |
+
if (
|
616 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
617 |
+
and hook.__class__.__name__ == "WeightNorm"
|
618 |
+
):
|
619 |
+
torch.nn.utils.remove_weight_norm(l)
|
620 |
+
for l in self.resblocks:
|
621 |
+
for hook in self.resblocks._forward_pre_hooks.values():
|
622 |
+
if (
|
623 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
624 |
+
and hook.__class__.__name__ == "WeightNorm"
|
625 |
+
):
|
626 |
+
torch.nn.utils.remove_weight_norm(l)
|
627 |
+
return self
|
628 |
+
|
629 |
+
|
630 |
+
sr2sr = {
|
631 |
+
"32k": 32000,
|
632 |
+
"40k": 40000,
|
633 |
+
"48k": 48000,
|
634 |
+
}
|
635 |
+
|
636 |
+
|
637 |
+
class SynthesizerTrnMs256NSFsid(nn.Module):
|
638 |
+
def __init__(
|
639 |
+
self,
|
640 |
+
spec_channels,
|
641 |
+
segment_size,
|
642 |
+
inter_channels,
|
643 |
+
hidden_channels,
|
644 |
+
filter_channels,
|
645 |
+
n_heads,
|
646 |
+
n_layers,
|
647 |
+
kernel_size,
|
648 |
+
p_dropout,
|
649 |
+
resblock,
|
650 |
+
resblock_kernel_sizes,
|
651 |
+
resblock_dilation_sizes,
|
652 |
+
upsample_rates,
|
653 |
+
upsample_initial_channel,
|
654 |
+
upsample_kernel_sizes,
|
655 |
+
spk_embed_dim,
|
656 |
+
gin_channels,
|
657 |
+
sr,
|
658 |
+
**kwargs
|
659 |
+
):
|
660 |
+
super(SynthesizerTrnMs256NSFsid, self).__init__()
|
661 |
+
if isinstance(sr, str):
|
662 |
+
sr = sr2sr[sr]
|
663 |
+
self.spec_channels = spec_channels
|
664 |
+
self.inter_channels = inter_channels
|
665 |
+
self.hidden_channels = hidden_channels
|
666 |
+
self.filter_channels = filter_channels
|
667 |
+
self.n_heads = n_heads
|
668 |
+
self.n_layers = n_layers
|
669 |
+
self.kernel_size = kernel_size
|
670 |
+
self.p_dropout = float(p_dropout)
|
671 |
+
self.resblock = resblock
|
672 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
673 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
674 |
+
self.upsample_rates = upsample_rates
|
675 |
+
self.upsample_initial_channel = upsample_initial_channel
|
676 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
677 |
+
self.segment_size = segment_size
|
678 |
+
self.gin_channels = gin_channels
|
679 |
+
# self.hop_length = hop_length#
|
680 |
+
self.spk_embed_dim = spk_embed_dim
|
681 |
+
self.enc_p = TextEncoder256(
|
682 |
+
inter_channels,
|
683 |
+
hidden_channels,
|
684 |
+
filter_channels,
|
685 |
+
n_heads,
|
686 |
+
n_layers,
|
687 |
+
kernel_size,
|
688 |
+
float(p_dropout),
|
689 |
+
)
|
690 |
+
self.dec = GeneratorNSF(
|
691 |
+
inter_channels,
|
692 |
+
resblock,
|
693 |
+
resblock_kernel_sizes,
|
694 |
+
resblock_dilation_sizes,
|
695 |
+
upsample_rates,
|
696 |
+
upsample_initial_channel,
|
697 |
+
upsample_kernel_sizes,
|
698 |
+
gin_channels=gin_channels,
|
699 |
+
sr=sr,
|
700 |
+
is_half=kwargs["is_half"],
|
701 |
+
)
|
702 |
+
self.enc_q = PosteriorEncoder(
|
703 |
+
spec_channels,
|
704 |
+
inter_channels,
|
705 |
+
hidden_channels,
|
706 |
+
5,
|
707 |
+
1,
|
708 |
+
16,
|
709 |
+
gin_channels=gin_channels,
|
710 |
+
)
|
711 |
+
self.flow = ResidualCouplingBlock(
|
712 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
713 |
+
)
|
714 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
715 |
+
logger.debug(
|
716 |
+
"gin_channels: "
|
717 |
+
+ str(gin_channels)
|
718 |
+
+ ", self.spk_embed_dim: "
|
719 |
+
+ str(self.spk_embed_dim)
|
720 |
+
)
|
721 |
+
|
722 |
+
def remove_weight_norm(self):
|
723 |
+
self.dec.remove_weight_norm()
|
724 |
+
self.flow.remove_weight_norm()
|
725 |
+
self.enc_q.remove_weight_norm()
|
726 |
+
|
727 |
+
def __prepare_scriptable__(self):
|
728 |
+
for hook in self.dec._forward_pre_hooks.values():
|
729 |
+
# The hook we want to remove is an instance of WeightNorm class, so
|
730 |
+
# normally we would do `if isinstance(...)` but this class is not accessible
|
731 |
+
# because of shadowing, so we check the module name directly.
|
732 |
+
# https://github.com/pytorch/pytorch/blob/be0ca00c5ce260eb5bcec3237357f7a30cc08983/torch/nn/utils/__init__.py#L3
|
733 |
+
if (
|
734 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
735 |
+
and hook.__class__.__name__ == "WeightNorm"
|
736 |
+
):
|
737 |
+
torch.nn.utils.remove_weight_norm(self.dec)
|
738 |
+
for hook in self.flow._forward_pre_hooks.values():
|
739 |
+
if (
|
740 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
741 |
+
and hook.__class__.__name__ == "WeightNorm"
|
742 |
+
):
|
743 |
+
torch.nn.utils.remove_weight_norm(self.flow)
|
744 |
+
if hasattr(self, "enc_q"):
|
745 |
+
for hook in self.enc_q._forward_pre_hooks.values():
|
746 |
+
if (
|
747 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
748 |
+
and hook.__class__.__name__ == "WeightNorm"
|
749 |
+
):
|
750 |
+
torch.nn.utils.remove_weight_norm(self.enc_q)
|
751 |
+
return self
|
752 |
+
|
753 |
+
@torch.jit.ignore
|
754 |
+
def forward(
|
755 |
+
self,
|
756 |
+
phone: torch.Tensor,
|
757 |
+
phone_lengths: torch.Tensor,
|
758 |
+
pitch: torch.Tensor,
|
759 |
+
pitchf: torch.Tensor,
|
760 |
+
y: torch.Tensor,
|
761 |
+
y_lengths: torch.Tensor,
|
762 |
+
ds: Optional[torch.Tensor] = None,
|
763 |
+
): # 这里ds是id,[bs,1]
|
764 |
+
# print(1,pitch.shape)#[bs,t]
|
765 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
766 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
767 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
768 |
+
z_p = self.flow(z, y_mask, g=g)
|
769 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
770 |
+
z, y_lengths, self.segment_size
|
771 |
+
)
|
772 |
+
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
773 |
+
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
774 |
+
# print(-2,pitchf.shape,z_slice.shape)
|
775 |
+
o = self.dec(z_slice, pitchf, g=g)
|
776 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
777 |
+
|
778 |
+
@torch.jit.export
|
779 |
+
def infer(
|
780 |
+
self,
|
781 |
+
phone: torch.Tensor,
|
782 |
+
phone_lengths: torch.Tensor,
|
783 |
+
pitch: torch.Tensor,
|
784 |
+
nsff0: torch.Tensor,
|
785 |
+
sid: torch.Tensor,
|
786 |
+
rate: Optional[torch.Tensor] = None,
|
787 |
+
):
|
788 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
789 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
790 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
791 |
+
if rate is not None:
|
792 |
+
assert isinstance(rate, torch.Tensor)
|
793 |
+
head = int(z_p.shape[2] * (1 - rate.item()))
|
794 |
+
z_p = z_p[:, :, head:]
|
795 |
+
x_mask = x_mask[:, :, head:]
|
796 |
+
nsff0 = nsff0[:, head:]
|
797 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
798 |
+
o = self.dec(z * x_mask, nsff0, g=g)
|
799 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
800 |
+
|
801 |
+
|
802 |
+
class SynthesizerTrnMs768NSFsid(nn.Module):
|
803 |
+
def __init__(
|
804 |
+
self,
|
805 |
+
spec_channels,
|
806 |
+
segment_size,
|
807 |
+
inter_channels,
|
808 |
+
hidden_channels,
|
809 |
+
filter_channels,
|
810 |
+
n_heads,
|
811 |
+
n_layers,
|
812 |
+
kernel_size,
|
813 |
+
p_dropout,
|
814 |
+
resblock,
|
815 |
+
resblock_kernel_sizes,
|
816 |
+
resblock_dilation_sizes,
|
817 |
+
upsample_rates,
|
818 |
+
upsample_initial_channel,
|
819 |
+
upsample_kernel_sizes,
|
820 |
+
spk_embed_dim,
|
821 |
+
gin_channels,
|
822 |
+
sr,
|
823 |
+
**kwargs
|
824 |
+
):
|
825 |
+
super(SynthesizerTrnMs768NSFsid, self).__init__()
|
826 |
+
if isinstance(sr, str):
|
827 |
+
sr = sr2sr[sr]
|
828 |
+
self.spec_channels = spec_channels
|
829 |
+
self.inter_channels = inter_channels
|
830 |
+
self.hidden_channels = hidden_channels
|
831 |
+
self.filter_channels = filter_channels
|
832 |
+
self.n_heads = n_heads
|
833 |
+
self.n_layers = n_layers
|
834 |
+
self.kernel_size = kernel_size
|
835 |
+
self.p_dropout = float(p_dropout)
|
836 |
+
self.resblock = resblock
|
837 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
838 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
839 |
+
self.upsample_rates = upsample_rates
|
840 |
+
self.upsample_initial_channel = upsample_initial_channel
|
841 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
842 |
+
self.segment_size = segment_size
|
843 |
+
self.gin_channels = gin_channels
|
844 |
+
# self.hop_length = hop_length#
|
845 |
+
self.spk_embed_dim = spk_embed_dim
|
846 |
+
self.enc_p = TextEncoder768(
|
847 |
+
inter_channels,
|
848 |
+
hidden_channels,
|
849 |
+
filter_channels,
|
850 |
+
n_heads,
|
851 |
+
n_layers,
|
852 |
+
kernel_size,
|
853 |
+
float(p_dropout),
|
854 |
+
)
|
855 |
+
self.dec = GeneratorNSF(
|
856 |
+
inter_channels,
|
857 |
+
resblock,
|
858 |
+
resblock_kernel_sizes,
|
859 |
+
resblock_dilation_sizes,
|
860 |
+
upsample_rates,
|
861 |
+
upsample_initial_channel,
|
862 |
+
upsample_kernel_sizes,
|
863 |
+
gin_channels=gin_channels,
|
864 |
+
sr=sr,
|
865 |
+
is_half=kwargs["is_half"],
|
866 |
+
)
|
867 |
+
self.enc_q = PosteriorEncoder(
|
868 |
+
spec_channels,
|
869 |
+
inter_channels,
|
870 |
+
hidden_channels,
|
871 |
+
5,
|
872 |
+
1,
|
873 |
+
16,
|
874 |
+
gin_channels=gin_channels,
|
875 |
+
)
|
876 |
+
self.flow = ResidualCouplingBlock(
|
877 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
878 |
+
)
|
879 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
880 |
+
logger.debug(
|
881 |
+
"gin_channels: "
|
882 |
+
+ str(gin_channels)
|
883 |
+
+ ", self.spk_embed_dim: "
|
884 |
+
+ str(self.spk_embed_dim)
|
885 |
+
)
|
886 |
+
|
887 |
+
def remove_weight_norm(self):
|
888 |
+
self.dec.remove_weight_norm()
|
889 |
+
self.flow.remove_weight_norm()
|
890 |
+
self.enc_q.remove_weight_norm()
|
891 |
+
|
892 |
+
def __prepare_scriptable__(self):
|
893 |
+
for hook in self.dec._forward_pre_hooks.values():
|
894 |
+
# The hook we want to remove is an instance of WeightNorm class, so
|
895 |
+
# normally we would do `if isinstance(...)` but this class is not accessible
|
896 |
+
# because of shadowing, so we check the module name directly.
|
897 |
+
# https://github.com/pytorch/pytorch/blob/be0ca00c5ce260eb5bcec3237357f7a30cc08983/torch/nn/utils/__init__.py#L3
|
898 |
+
if (
|
899 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
900 |
+
and hook.__class__.__name__ == "WeightNorm"
|
901 |
+
):
|
902 |
+
torch.nn.utils.remove_weight_norm(self.dec)
|
903 |
+
for hook in self.flow._forward_pre_hooks.values():
|
904 |
+
if (
|
905 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
906 |
+
and hook.__class__.__name__ == "WeightNorm"
|
907 |
+
):
|
908 |
+
torch.nn.utils.remove_weight_norm(self.flow)
|
909 |
+
if hasattr(self, "enc_q"):
|
910 |
+
for hook in self.enc_q._forward_pre_hooks.values():
|
911 |
+
if (
|
912 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
913 |
+
and hook.__class__.__name__ == "WeightNorm"
|
914 |
+
):
|
915 |
+
torch.nn.utils.remove_weight_norm(self.enc_q)
|
916 |
+
return self
|
917 |
+
|
918 |
+
@torch.jit.ignore
|
919 |
+
def forward(
|
920 |
+
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
921 |
+
): # 这里ds是id,[bs,1]
|
922 |
+
# print(1,pitch.shape)#[bs,t]
|
923 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
924 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
925 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
926 |
+
z_p = self.flow(z, y_mask, g=g)
|
927 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
928 |
+
z, y_lengths, self.segment_size
|
929 |
+
)
|
930 |
+
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
931 |
+
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
932 |
+
# print(-2,pitchf.shape,z_slice.shape)
|
933 |
+
o = self.dec(z_slice, pitchf, g=g)
|
934 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
935 |
+
|
936 |
+
@torch.jit.export
|
937 |
+
def infer(
|
938 |
+
self,
|
939 |
+
phone: torch.Tensor,
|
940 |
+
phone_lengths: torch.Tensor,
|
941 |
+
pitch: torch.Tensor,
|
942 |
+
nsff0: torch.Tensor,
|
943 |
+
sid: torch.Tensor,
|
944 |
+
rate: Optional[torch.Tensor] = None,
|
945 |
+
):
|
946 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
947 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
948 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
949 |
+
if rate is not None:
|
950 |
+
head = int(z_p.shape[2] * (1.0 - rate.item()))
|
951 |
+
z_p = z_p[:, :, head:]
|
952 |
+
x_mask = x_mask[:, :, head:]
|
953 |
+
nsff0 = nsff0[:, head:]
|
954 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
955 |
+
o = self.dec(z * x_mask, nsff0, g=g)
|
956 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
957 |
+
|
958 |
+
|
959 |
+
class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
960 |
+
def __init__(
|
961 |
+
self,
|
962 |
+
spec_channels,
|
963 |
+
segment_size,
|
964 |
+
inter_channels,
|
965 |
+
hidden_channels,
|
966 |
+
filter_channels,
|
967 |
+
n_heads,
|
968 |
+
n_layers,
|
969 |
+
kernel_size,
|
970 |
+
p_dropout,
|
971 |
+
resblock,
|
972 |
+
resblock_kernel_sizes,
|
973 |
+
resblock_dilation_sizes,
|
974 |
+
upsample_rates,
|
975 |
+
upsample_initial_channel,
|
976 |
+
upsample_kernel_sizes,
|
977 |
+
spk_embed_dim,
|
978 |
+
gin_channels,
|
979 |
+
sr=None,
|
980 |
+
**kwargs
|
981 |
+
):
|
982 |
+
super(SynthesizerTrnMs256NSFsid_nono, self).__init__()
|
983 |
+
self.spec_channels = spec_channels
|
984 |
+
self.inter_channels = inter_channels
|
985 |
+
self.hidden_channels = hidden_channels
|
986 |
+
self.filter_channels = filter_channels
|
987 |
+
self.n_heads = n_heads
|
988 |
+
self.n_layers = n_layers
|
989 |
+
self.kernel_size = kernel_size
|
990 |
+
self.p_dropout = float(p_dropout)
|
991 |
+
self.resblock = resblock
|
992 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
993 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
994 |
+
self.upsample_rates = upsample_rates
|
995 |
+
self.upsample_initial_channel = upsample_initial_channel
|
996 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
997 |
+
self.segment_size = segment_size
|
998 |
+
self.gin_channels = gin_channels
|
999 |
+
# self.hop_length = hop_length#
|
1000 |
+
self.spk_embed_dim = spk_embed_dim
|
1001 |
+
self.enc_p = TextEncoder256(
|
1002 |
+
inter_channels,
|
1003 |
+
hidden_channels,
|
1004 |
+
filter_channels,
|
1005 |
+
n_heads,
|
1006 |
+
n_layers,
|
1007 |
+
kernel_size,
|
1008 |
+
float(p_dropout),
|
1009 |
+
f0=False,
|
1010 |
+
)
|
1011 |
+
self.dec = Generator(
|
1012 |
+
inter_channels,
|
1013 |
+
resblock,
|
1014 |
+
resblock_kernel_sizes,
|
1015 |
+
resblock_dilation_sizes,
|
1016 |
+
upsample_rates,
|
1017 |
+
upsample_initial_channel,
|
1018 |
+
upsample_kernel_sizes,
|
1019 |
+
gin_channels=gin_channels,
|
1020 |
+
)
|
1021 |
+
self.enc_q = PosteriorEncoder(
|
1022 |
+
spec_channels,
|
1023 |
+
inter_channels,
|
1024 |
+
hidden_channels,
|
1025 |
+
5,
|
1026 |
+
1,
|
1027 |
+
16,
|
1028 |
+
gin_channels=gin_channels,
|
1029 |
+
)
|
1030 |
+
self.flow = ResidualCouplingBlock(
|
1031 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
1032 |
+
)
|
1033 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
1034 |
+
logger.debug(
|
1035 |
+
"gin_channels: "
|
1036 |
+
+ str(gin_channels)
|
1037 |
+
+ ", self.spk_embed_dim: "
|
1038 |
+
+ str(self.spk_embed_dim)
|
1039 |
+
)
|
1040 |
+
|
1041 |
+
def remove_weight_norm(self):
|
1042 |
+
self.dec.remove_weight_norm()
|
1043 |
+
self.flow.remove_weight_norm()
|
1044 |
+
self.enc_q.remove_weight_norm()
|
1045 |
+
|
1046 |
+
def __prepare_scriptable__(self):
|
1047 |
+
for hook in self.dec._forward_pre_hooks.values():
|
1048 |
+
# The hook we want to remove is an instance of WeightNorm class, so
|
1049 |
+
# normally we would do `if isinstance(...)` but this class is not accessible
|
1050 |
+
# because of shadowing, so we check the module name directly.
|
1051 |
+
# https://github.com/pytorch/pytorch/blob/be0ca00c5ce260eb5bcec3237357f7a30cc08983/torch/nn/utils/__init__.py#L3
|
1052 |
+
if (
|
1053 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
1054 |
+
and hook.__class__.__name__ == "WeightNorm"
|
1055 |
+
):
|
1056 |
+
torch.nn.utils.remove_weight_norm(self.dec)
|
1057 |
+
for hook in self.flow._forward_pre_hooks.values():
|
1058 |
+
if (
|
1059 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
1060 |
+
and hook.__class__.__name__ == "WeightNorm"
|
1061 |
+
):
|
1062 |
+
torch.nn.utils.remove_weight_norm(self.flow)
|
1063 |
+
if hasattr(self, "enc_q"):
|
1064 |
+
for hook in self.enc_q._forward_pre_hooks.values():
|
1065 |
+
if (
|
1066 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
1067 |
+
and hook.__class__.__name__ == "WeightNorm"
|
1068 |
+
):
|
1069 |
+
torch.nn.utils.remove_weight_norm(self.enc_q)
|
1070 |
+
return self
|
1071 |
+
|
1072 |
+
@torch.jit.ignore
|
1073 |
+
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
1074 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
1075 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
1076 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
1077 |
+
z_p = self.flow(z, y_mask, g=g)
|
1078 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
1079 |
+
z, y_lengths, self.segment_size
|
1080 |
+
)
|
1081 |
+
o = self.dec(z_slice, g=g)
|
1082 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
1083 |
+
|
1084 |
+
@torch.jit.export
|
1085 |
+
def infer(
|
1086 |
+
self,
|
1087 |
+
phone: torch.Tensor,
|
1088 |
+
phone_lengths: torch.Tensor,
|
1089 |
+
sid: torch.Tensor,
|
1090 |
+
rate: Optional[torch.Tensor] = None,
|
1091 |
+
):
|
1092 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
1093 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
1094 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
1095 |
+
if rate is not None:
|
1096 |
+
head = int(z_p.shape[2] * (1.0 - rate.item()))
|
1097 |
+
z_p = z_p[:, :, head:]
|
1098 |
+
x_mask = x_mask[:, :, head:]
|
1099 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
1100 |
+
o = self.dec(z * x_mask, g=g)
|
1101 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
1102 |
+
|
1103 |
+
|
1104 |
+
class SynthesizerTrnMs768NSFsid_nono(nn.Module):
|
1105 |
+
def __init__(
|
1106 |
+
self,
|
1107 |
+
spec_channels,
|
1108 |
+
segment_size,
|
1109 |
+
inter_channels,
|
1110 |
+
hidden_channels,
|
1111 |
+
filter_channels,
|
1112 |
+
n_heads,
|
1113 |
+
n_layers,
|
1114 |
+
kernel_size,
|
1115 |
+
p_dropout,
|
1116 |
+
resblock,
|
1117 |
+
resblock_kernel_sizes,
|
1118 |
+
resblock_dilation_sizes,
|
1119 |
+
upsample_rates,
|
1120 |
+
upsample_initial_channel,
|
1121 |
+
upsample_kernel_sizes,
|
1122 |
+
spk_embed_dim,
|
1123 |
+
gin_channels,
|
1124 |
+
sr=None,
|
1125 |
+
**kwargs
|
1126 |
+
):
|
1127 |
+
super(SynthesizerTrnMs768NSFsid_nono, self).__init__()
|
1128 |
+
self.spec_channels = spec_channels
|
1129 |
+
self.inter_channels = inter_channels
|
1130 |
+
self.hidden_channels = hidden_channels
|
1131 |
+
self.filter_channels = filter_channels
|
1132 |
+
self.n_heads = n_heads
|
1133 |
+
self.n_layers = n_layers
|
1134 |
+
self.kernel_size = kernel_size
|
1135 |
+
self.p_dropout = float(p_dropout)
|
1136 |
+
self.resblock = resblock
|
1137 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
1138 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
1139 |
+
self.upsample_rates = upsample_rates
|
1140 |
+
self.upsample_initial_channel = upsample_initial_channel
|
1141 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
1142 |
+
self.segment_size = segment_size
|
1143 |
+
self.gin_channels = gin_channels
|
1144 |
+
# self.hop_length = hop_length#
|
1145 |
+
self.spk_embed_dim = spk_embed_dim
|
1146 |
+
self.enc_p = TextEncoder768(
|
1147 |
+
inter_channels,
|
1148 |
+
hidden_channels,
|
1149 |
+
filter_channels,
|
1150 |
+
n_heads,
|
1151 |
+
n_layers,
|
1152 |
+
kernel_size,
|
1153 |
+
float(p_dropout),
|
1154 |
+
f0=False,
|
1155 |
+
)
|
1156 |
+
self.dec = Generator(
|
1157 |
+
inter_channels,
|
1158 |
+
resblock,
|
1159 |
+
resblock_kernel_sizes,
|
1160 |
+
resblock_dilation_sizes,
|
1161 |
+
upsample_rates,
|
1162 |
+
upsample_initial_channel,
|
1163 |
+
upsample_kernel_sizes,
|
1164 |
+
gin_channels=gin_channels,
|
1165 |
+
)
|
1166 |
+
self.enc_q = PosteriorEncoder(
|
1167 |
+
spec_channels,
|
1168 |
+
inter_channels,
|
1169 |
+
hidden_channels,
|
1170 |
+
5,
|
1171 |
+
1,
|
1172 |
+
16,
|
1173 |
+
gin_channels=gin_channels,
|
1174 |
+
)
|
1175 |
+
self.flow = ResidualCouplingBlock(
|
1176 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
1177 |
+
)
|
1178 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
1179 |
+
logger.debug(
|
1180 |
+
"gin_channels: "
|
1181 |
+
+ str(gin_channels)
|
1182 |
+
+ ", self.spk_embed_dim: "
|
1183 |
+
+ str(self.spk_embed_dim)
|
1184 |
+
)
|
1185 |
+
|
1186 |
+
def remove_weight_norm(self):
|
1187 |
+
self.dec.remove_weight_norm()
|
1188 |
+
self.flow.remove_weight_norm()
|
1189 |
+
self.enc_q.remove_weight_norm()
|
1190 |
+
|
1191 |
+
def __prepare_scriptable__(self):
|
1192 |
+
for hook in self.dec._forward_pre_hooks.values():
|
1193 |
+
# The hook we want to remove is an instance of WeightNorm class, so
|
1194 |
+
# normally we would do `if isinstance(...)` but this class is not accessible
|
1195 |
+
# because of shadowing, so we check the module name directly.
|
1196 |
+
# https://github.com/pytorch/pytorch/blob/be0ca00c5ce260eb5bcec3237357f7a30cc08983/torch/nn/utils/__init__.py#L3
|
1197 |
+
if (
|
1198 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
1199 |
+
and hook.__class__.__name__ == "WeightNorm"
|
1200 |
+
):
|
1201 |
+
torch.nn.utils.remove_weight_norm(self.dec)
|
1202 |
+
for hook in self.flow._forward_pre_hooks.values():
|
1203 |
+
if (
|
1204 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
1205 |
+
and hook.__class__.__name__ == "WeightNorm"
|
1206 |
+
):
|
1207 |
+
torch.nn.utils.remove_weight_norm(self.flow)
|
1208 |
+
if hasattr(self, "enc_q"):
|
1209 |
+
for hook in self.enc_q._forward_pre_hooks.values():
|
1210 |
+
if (
|
1211 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
1212 |
+
and hook.__class__.__name__ == "WeightNorm"
|
1213 |
+
):
|
1214 |
+
torch.nn.utils.remove_weight_norm(self.enc_q)
|
1215 |
+
return self
|
1216 |
+
|
1217 |
+
@torch.jit.ignore
|
1218 |
+
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
1219 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
1220 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
1221 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
1222 |
+
z_p = self.flow(z, y_mask, g=g)
|
1223 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
1224 |
+
z, y_lengths, self.segment_size
|
1225 |
+
)
|
1226 |
+
o = self.dec(z_slice, g=g)
|
1227 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
1228 |
+
|
1229 |
+
@torch.jit.export
|
1230 |
+
def infer(
|
1231 |
+
self,
|
1232 |
+
phone: torch.Tensor,
|
1233 |
+
phone_lengths: torch.Tensor,
|
1234 |
+
sid: torch.Tensor,
|
1235 |
+
rate: Optional[torch.Tensor] = None,
|
1236 |
+
):
|
1237 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
1238 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
1239 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
1240 |
+
if rate is not None:
|
1241 |
+
head = int(z_p.shape[2] * (1.0 - rate.item()))
|
1242 |
+
z_p = z_p[:, :, head:]
|
1243 |
+
x_mask = x_mask[:, :, head:]
|
1244 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
1245 |
+
o = self.dec(z * x_mask, g=g)
|
1246 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
1247 |
+
|
1248 |
+
|
1249 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
1250 |
+
def __init__(self, use_spectral_norm=False):
|
1251 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
1252 |
+
periods = [2, 3, 5, 7, 11, 17]
|
1253 |
+
# periods = [3, 5, 7, 11, 17, 23, 37]
|
1254 |
+
|
1255 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
1256 |
+
discs = discs + [
|
1257 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
1258 |
+
]
|
1259 |
+
self.discriminators = nn.ModuleList(discs)
|
1260 |
+
|
1261 |
+
def forward(self, y, y_hat):
|
1262 |
+
y_d_rs = [] #
|
1263 |
+
y_d_gs = []
|
1264 |
+
fmap_rs = []
|
1265 |
+
fmap_gs = []
|
1266 |
+
for i, d in enumerate(self.discriminators):
|
1267 |
+
y_d_r, fmap_r = d(y)
|
1268 |
+
y_d_g, fmap_g = d(y_hat)
|
1269 |
+
# for j in range(len(fmap_r)):
|
1270 |
+
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
1271 |
+
y_d_rs.append(y_d_r)
|
1272 |
+
y_d_gs.append(y_d_g)
|
1273 |
+
fmap_rs.append(fmap_r)
|
1274 |
+
fmap_gs.append(fmap_g)
|
1275 |
+
|
1276 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
1277 |
+
|
1278 |
+
|
1279 |
+
class MultiPeriodDiscriminatorV2(torch.nn.Module):
|
1280 |
+
def __init__(self, use_spectral_norm=False):
|
1281 |
+
super(MultiPeriodDiscriminatorV2, self).__init__()
|
1282 |
+
# periods = [2, 3, 5, 7, 11, 17]
|
1283 |
+
periods = [2, 3, 5, 7, 11, 17, 23, 37]
|
1284 |
+
|
1285 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
1286 |
+
discs = discs + [
|
1287 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
1288 |
+
]
|
1289 |
+
self.discriminators = nn.ModuleList(discs)
|
1290 |
+
|
1291 |
+
def forward(self, y, y_hat):
|
1292 |
+
y_d_rs = [] #
|
1293 |
+
y_d_gs = []
|
1294 |
+
fmap_rs = []
|
1295 |
+
fmap_gs = []
|
1296 |
+
for i, d in enumerate(self.discriminators):
|
1297 |
+
y_d_r, fmap_r = d(y)
|
1298 |
+
y_d_g, fmap_g = d(y_hat)
|
1299 |
+
# for j in range(len(fmap_r)):
|
1300 |
+
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
1301 |
+
y_d_rs.append(y_d_r)
|
1302 |
+
y_d_gs.append(y_d_g)
|
1303 |
+
fmap_rs.append(fmap_r)
|
1304 |
+
fmap_gs.append(fmap_g)
|
1305 |
+
|
1306 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
1307 |
+
|
1308 |
+
|
1309 |
+
class DiscriminatorS(torch.nn.Module):
|
1310 |
+
def __init__(self, use_spectral_norm=False):
|
1311 |
+
super(DiscriminatorS, self).__init__()
|
1312 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
1313 |
+
self.convs = nn.ModuleList(
|
1314 |
+
[
|
1315 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
1316 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
1317 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
1318 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
1319 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
1320 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
1321 |
+
]
|
1322 |
+
)
|
1323 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
1324 |
+
|
1325 |
+
def forward(self, x):
|
1326 |
+
fmap = []
|
1327 |
+
|
1328 |
+
for l in self.convs:
|
1329 |
+
x = l(x)
|
1330 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
1331 |
+
fmap.append(x)
|
1332 |
+
x = self.conv_post(x)
|
1333 |
+
fmap.append(x)
|
1334 |
+
x = torch.flatten(x, 1, -1)
|
1335 |
+
|
1336 |
+
return x, fmap
|
1337 |
+
|
1338 |
+
|
1339 |
+
class DiscriminatorP(torch.nn.Module):
|
1340 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
1341 |
+
super(DiscriminatorP, self).__init__()
|
1342 |
+
self.period = period
|
1343 |
+
self.use_spectral_norm = use_spectral_norm
|
1344 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
1345 |
+
self.convs = nn.ModuleList(
|
1346 |
+
[
|
1347 |
+
norm_f(
|
1348 |
+
Conv2d(
|
1349 |
+
1,
|
1350 |
+
32,
|
1351 |
+
(kernel_size, 1),
|
1352 |
+
(stride, 1),
|
1353 |
+
padding=(get_padding(kernel_size, 1), 0),
|
1354 |
+
)
|
1355 |
+
),
|
1356 |
+
norm_f(
|
1357 |
+
Conv2d(
|
1358 |
+
32,
|
1359 |
+
128,
|
1360 |
+
(kernel_size, 1),
|
1361 |
+
(stride, 1),
|
1362 |
+
padding=(get_padding(kernel_size, 1), 0),
|
1363 |
+
)
|
1364 |
+
),
|
1365 |
+
norm_f(
|
1366 |
+
Conv2d(
|
1367 |
+
128,
|
1368 |
+
512,
|
1369 |
+
(kernel_size, 1),
|
1370 |
+
(stride, 1),
|
1371 |
+
padding=(get_padding(kernel_size, 1), 0),
|
1372 |
+
)
|
1373 |
+
),
|
1374 |
+
norm_f(
|
1375 |
+
Conv2d(
|
1376 |
+
512,
|
1377 |
+
1024,
|
1378 |
+
(kernel_size, 1),
|
1379 |
+
(stride, 1),
|
1380 |
+
padding=(get_padding(kernel_size, 1), 0),
|
1381 |
+
)
|
1382 |
+
),
|
1383 |
+
norm_f(
|
1384 |
+
Conv2d(
|
1385 |
+
1024,
|
1386 |
+
1024,
|
1387 |
+
(kernel_size, 1),
|
1388 |
+
1,
|
1389 |
+
padding=(get_padding(kernel_size, 1), 0),
|
1390 |
+
)
|
1391 |
+
),
|
1392 |
+
]
|
1393 |
+
)
|
1394 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
1395 |
+
|
1396 |
+
def forward(self, x):
|
1397 |
+
fmap = []
|
1398 |
+
|
1399 |
+
# 1d to 2d
|
1400 |
+
b, c, t = x.shape
|
1401 |
+
if t % self.period != 0: # pad first
|
1402 |
+
n_pad = self.period - (t % self.period)
|
1403 |
+
if has_xpu and x.dtype == torch.bfloat16:
|
1404 |
+
x = F.pad(x.to(dtype=torch.float16), (0, n_pad), "reflect").to(
|
1405 |
+
dtype=torch.bfloat16
|
1406 |
+
)
|
1407 |
+
else:
|
1408 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
1409 |
+
t = t + n_pad
|
1410 |
+
x = x.view(b, c, t // self.period, self.period)
|
1411 |
+
|
1412 |
+
for l in self.convs:
|
1413 |
+
x = l(x)
|
1414 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
1415 |
+
fmap.append(x)
|
1416 |
+
x = self.conv_post(x)
|
1417 |
+
fmap.append(x)
|
1418 |
+
x = torch.flatten(x, 1, -1)
|
1419 |
+
|
1420 |
+
return x, fmap
|
infer/lib/infer_pack/models_onnx.py
ADDED
@@ -0,0 +1,821 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import logging
|
3 |
+
|
4 |
+
logger = logging.getLogger(__name__)
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
|
10 |
+
from torch.nn import functional as F
|
11 |
+
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
12 |
+
|
13 |
+
from infer.lib.infer_pack import attentions, commons, modules
|
14 |
+
from infer.lib.infer_pack.commons import get_padding, init_weights
|
15 |
+
|
16 |
+
|
17 |
+
class TextEncoder256(nn.Module):
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
out_channels,
|
21 |
+
hidden_channels,
|
22 |
+
filter_channels,
|
23 |
+
n_heads,
|
24 |
+
n_layers,
|
25 |
+
kernel_size,
|
26 |
+
p_dropout,
|
27 |
+
f0=True,
|
28 |
+
):
|
29 |
+
super().__init__()
|
30 |
+
self.out_channels = out_channels
|
31 |
+
self.hidden_channels = hidden_channels
|
32 |
+
self.filter_channels = filter_channels
|
33 |
+
self.n_heads = n_heads
|
34 |
+
self.n_layers = n_layers
|
35 |
+
self.kernel_size = kernel_size
|
36 |
+
self.p_dropout = p_dropout
|
37 |
+
self.emb_phone = nn.Linear(256, hidden_channels)
|
38 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
39 |
+
if f0 == True:
|
40 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
41 |
+
self.encoder = attentions.Encoder(
|
42 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
43 |
+
)
|
44 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
45 |
+
|
46 |
+
def forward(self, phone, pitch, lengths):
|
47 |
+
if pitch == None:
|
48 |
+
x = self.emb_phone(phone)
|
49 |
+
else:
|
50 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
51 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
52 |
+
x = self.lrelu(x)
|
53 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
54 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
55 |
+
x.dtype
|
56 |
+
)
|
57 |
+
x = self.encoder(x * x_mask, x_mask)
|
58 |
+
stats = self.proj(x) * x_mask
|
59 |
+
|
60 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
61 |
+
return m, logs, x_mask
|
62 |
+
|
63 |
+
|
64 |
+
class TextEncoder768(nn.Module):
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
out_channels,
|
68 |
+
hidden_channels,
|
69 |
+
filter_channels,
|
70 |
+
n_heads,
|
71 |
+
n_layers,
|
72 |
+
kernel_size,
|
73 |
+
p_dropout,
|
74 |
+
f0=True,
|
75 |
+
):
|
76 |
+
super().__init__()
|
77 |
+
self.out_channels = out_channels
|
78 |
+
self.hidden_channels = hidden_channels
|
79 |
+
self.filter_channels = filter_channels
|
80 |
+
self.n_heads = n_heads
|
81 |
+
self.n_layers = n_layers
|
82 |
+
self.kernel_size = kernel_size
|
83 |
+
self.p_dropout = p_dropout
|
84 |
+
self.emb_phone = nn.Linear(768, hidden_channels)
|
85 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
86 |
+
if f0 == True:
|
87 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
88 |
+
self.encoder = attentions.Encoder(
|
89 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
90 |
+
)
|
91 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
92 |
+
|
93 |
+
def forward(self, phone, pitch, lengths):
|
94 |
+
if pitch == None:
|
95 |
+
x = self.emb_phone(phone)
|
96 |
+
else:
|
97 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
98 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
99 |
+
x = self.lrelu(x)
|
100 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
101 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
102 |
+
x.dtype
|
103 |
+
)
|
104 |
+
x = self.encoder(x * x_mask, x_mask)
|
105 |
+
stats = self.proj(x) * x_mask
|
106 |
+
|
107 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
108 |
+
return m, logs, x_mask
|
109 |
+
|
110 |
+
|
111 |
+
class ResidualCouplingBlock(nn.Module):
|
112 |
+
def __init__(
|
113 |
+
self,
|
114 |
+
channels,
|
115 |
+
hidden_channels,
|
116 |
+
kernel_size,
|
117 |
+
dilation_rate,
|
118 |
+
n_layers,
|
119 |
+
n_flows=4,
|
120 |
+
gin_channels=0,
|
121 |
+
):
|
122 |
+
super().__init__()
|
123 |
+
self.channels = channels
|
124 |
+
self.hidden_channels = hidden_channels
|
125 |
+
self.kernel_size = kernel_size
|
126 |
+
self.dilation_rate = dilation_rate
|
127 |
+
self.n_layers = n_layers
|
128 |
+
self.n_flows = n_flows
|
129 |
+
self.gin_channels = gin_channels
|
130 |
+
|
131 |
+
self.flows = nn.ModuleList()
|
132 |
+
for i in range(n_flows):
|
133 |
+
self.flows.append(
|
134 |
+
modules.ResidualCouplingLayer(
|
135 |
+
channels,
|
136 |
+
hidden_channels,
|
137 |
+
kernel_size,
|
138 |
+
dilation_rate,
|
139 |
+
n_layers,
|
140 |
+
gin_channels=gin_channels,
|
141 |
+
mean_only=True,
|
142 |
+
)
|
143 |
+
)
|
144 |
+
self.flows.append(modules.Flip())
|
145 |
+
|
146 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
147 |
+
if not reverse:
|
148 |
+
for flow in self.flows:
|
149 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
150 |
+
else:
|
151 |
+
for flow in reversed(self.flows):
|
152 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
153 |
+
return x
|
154 |
+
|
155 |
+
def remove_weight_norm(self):
|
156 |
+
for i in range(self.n_flows):
|
157 |
+
self.flows[i * 2].remove_weight_norm()
|
158 |
+
|
159 |
+
|
160 |
+
class PosteriorEncoder(nn.Module):
|
161 |
+
def __init__(
|
162 |
+
self,
|
163 |
+
in_channels,
|
164 |
+
out_channels,
|
165 |
+
hidden_channels,
|
166 |
+
kernel_size,
|
167 |
+
dilation_rate,
|
168 |
+
n_layers,
|
169 |
+
gin_channels=0,
|
170 |
+
):
|
171 |
+
super().__init__()
|
172 |
+
self.in_channels = in_channels
|
173 |
+
self.out_channels = out_channels
|
174 |
+
self.hidden_channels = hidden_channels
|
175 |
+
self.kernel_size = kernel_size
|
176 |
+
self.dilation_rate = dilation_rate
|
177 |
+
self.n_layers = n_layers
|
178 |
+
self.gin_channels = gin_channels
|
179 |
+
|
180 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
181 |
+
self.enc = modules.WN(
|
182 |
+
hidden_channels,
|
183 |
+
kernel_size,
|
184 |
+
dilation_rate,
|
185 |
+
n_layers,
|
186 |
+
gin_channels=gin_channels,
|
187 |
+
)
|
188 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
189 |
+
|
190 |
+
def forward(self, x, x_lengths, g=None):
|
191 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
192 |
+
x.dtype
|
193 |
+
)
|
194 |
+
x = self.pre(x) * x_mask
|
195 |
+
x = self.enc(x, x_mask, g=g)
|
196 |
+
stats = self.proj(x) * x_mask
|
197 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
198 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
199 |
+
return z, m, logs, x_mask
|
200 |
+
|
201 |
+
def remove_weight_norm(self):
|
202 |
+
self.enc.remove_weight_norm()
|
203 |
+
|
204 |
+
|
205 |
+
class Generator(torch.nn.Module):
|
206 |
+
def __init__(
|
207 |
+
self,
|
208 |
+
initial_channel,
|
209 |
+
resblock,
|
210 |
+
resblock_kernel_sizes,
|
211 |
+
resblock_dilation_sizes,
|
212 |
+
upsample_rates,
|
213 |
+
upsample_initial_channel,
|
214 |
+
upsample_kernel_sizes,
|
215 |
+
gin_channels=0,
|
216 |
+
):
|
217 |
+
super(Generator, self).__init__()
|
218 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
219 |
+
self.num_upsamples = len(upsample_rates)
|
220 |
+
self.conv_pre = Conv1d(
|
221 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
222 |
+
)
|
223 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
224 |
+
|
225 |
+
self.ups = nn.ModuleList()
|
226 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
227 |
+
self.ups.append(
|
228 |
+
weight_norm(
|
229 |
+
ConvTranspose1d(
|
230 |
+
upsample_initial_channel // (2**i),
|
231 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
232 |
+
k,
|
233 |
+
u,
|
234 |
+
padding=(k - u) // 2,
|
235 |
+
)
|
236 |
+
)
|
237 |
+
)
|
238 |
+
|
239 |
+
self.resblocks = nn.ModuleList()
|
240 |
+
for i in range(len(self.ups)):
|
241 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
242 |
+
for j, (k, d) in enumerate(
|
243 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
244 |
+
):
|
245 |
+
self.resblocks.append(resblock(ch, k, d))
|
246 |
+
|
247 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
248 |
+
self.ups.apply(init_weights)
|
249 |
+
|
250 |
+
if gin_channels != 0:
|
251 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
252 |
+
|
253 |
+
def forward(self, x, g=None):
|
254 |
+
x = self.conv_pre(x)
|
255 |
+
if g is not None:
|
256 |
+
x = x + self.cond(g)
|
257 |
+
|
258 |
+
for i in range(self.num_upsamples):
|
259 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
260 |
+
x = self.ups[i](x)
|
261 |
+
xs = None
|
262 |
+
for j in range(self.num_kernels):
|
263 |
+
if xs is None:
|
264 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
265 |
+
else:
|
266 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
267 |
+
x = xs / self.num_kernels
|
268 |
+
x = F.leaky_relu(x)
|
269 |
+
x = self.conv_post(x)
|
270 |
+
x = torch.tanh(x)
|
271 |
+
|
272 |
+
return x
|
273 |
+
|
274 |
+
def remove_weight_norm(self):
|
275 |
+
for l in self.ups:
|
276 |
+
remove_weight_norm(l)
|
277 |
+
for l in self.resblocks:
|
278 |
+
l.remove_weight_norm()
|
279 |
+
|
280 |
+
|
281 |
+
class SineGen(torch.nn.Module):
|
282 |
+
"""Definition of sine generator
|
283 |
+
SineGen(samp_rate, harmonic_num = 0,
|
284 |
+
sine_amp = 0.1, noise_std = 0.003,
|
285 |
+
voiced_threshold = 0,
|
286 |
+
flag_for_pulse=False)
|
287 |
+
samp_rate: sampling rate in Hz
|
288 |
+
harmonic_num: number of harmonic overtones (default 0)
|
289 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
290 |
+
noise_std: std of Gaussian noise (default 0.003)
|
291 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
292 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
293 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
294 |
+
segment is always sin(np.pi) or cos(0)
|
295 |
+
"""
|
296 |
+
|
297 |
+
def __init__(
|
298 |
+
self,
|
299 |
+
samp_rate,
|
300 |
+
harmonic_num=0,
|
301 |
+
sine_amp=0.1,
|
302 |
+
noise_std=0.003,
|
303 |
+
voiced_threshold=0,
|
304 |
+
flag_for_pulse=False,
|
305 |
+
):
|
306 |
+
super(SineGen, self).__init__()
|
307 |
+
self.sine_amp = sine_amp
|
308 |
+
self.noise_std = noise_std
|
309 |
+
self.harmonic_num = harmonic_num
|
310 |
+
self.dim = self.harmonic_num + 1
|
311 |
+
self.sampling_rate = samp_rate
|
312 |
+
self.voiced_threshold = voiced_threshold
|
313 |
+
|
314 |
+
def _f02uv(self, f0):
|
315 |
+
# generate uv signal
|
316 |
+
uv = torch.ones_like(f0)
|
317 |
+
uv = uv * (f0 > self.voiced_threshold)
|
318 |
+
return uv
|
319 |
+
|
320 |
+
def forward(self, f0, upp):
|
321 |
+
"""sine_tensor, uv = forward(f0)
|
322 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
323 |
+
f0 for unvoiced steps should be 0
|
324 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
325 |
+
output uv: tensor(batchsize=1, length, 1)
|
326 |
+
"""
|
327 |
+
with torch.no_grad():
|
328 |
+
f0 = f0[:, None].transpose(1, 2)
|
329 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
330 |
+
# fundamental component
|
331 |
+
f0_buf[:, :, 0] = f0[:, :, 0]
|
332 |
+
for idx in np.arange(self.harmonic_num):
|
333 |
+
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
|
334 |
+
idx + 2
|
335 |
+
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
336 |
+
rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
|
337 |
+
rand_ini = torch.rand(
|
338 |
+
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
|
339 |
+
)
|
340 |
+
rand_ini[:, 0] = 0
|
341 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
342 |
+
tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
|
343 |
+
tmp_over_one *= upp
|
344 |
+
tmp_over_one = F.interpolate(
|
345 |
+
tmp_over_one.transpose(2, 1),
|
346 |
+
scale_factor=upp,
|
347 |
+
mode="linear",
|
348 |
+
align_corners=True,
|
349 |
+
).transpose(2, 1)
|
350 |
+
rad_values = F.interpolate(
|
351 |
+
rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
|
352 |
+
).transpose(
|
353 |
+
2, 1
|
354 |
+
) #######
|
355 |
+
tmp_over_one %= 1
|
356 |
+
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
357 |
+
cumsum_shift = torch.zeros_like(rad_values)
|
358 |
+
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
359 |
+
sine_waves = torch.sin(
|
360 |
+
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
|
361 |
+
)
|
362 |
+
sine_waves = sine_waves * self.sine_amp
|
363 |
+
uv = self._f02uv(f0)
|
364 |
+
uv = F.interpolate(
|
365 |
+
uv.transpose(2, 1), scale_factor=upp, mode="nearest"
|
366 |
+
).transpose(2, 1)
|
367 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
368 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
369 |
+
sine_waves = sine_waves * uv + noise
|
370 |
+
return sine_waves, uv, noise
|
371 |
+
|
372 |
+
|
373 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
374 |
+
"""SourceModule for hn-nsf
|
375 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
376 |
+
add_noise_std=0.003, voiced_threshod=0)
|
377 |
+
sampling_rate: sampling_rate in Hz
|
378 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
379 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
380 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
381 |
+
note that amplitude of noise in unvoiced is decided
|
382 |
+
by sine_amp
|
383 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
384 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
385 |
+
F0_sampled (batchsize, length, 1)
|
386 |
+
Sine_source (batchsize, length, 1)
|
387 |
+
noise_source (batchsize, length 1)
|
388 |
+
uv (batchsize, length, 1)
|
389 |
+
"""
|
390 |
+
|
391 |
+
def __init__(
|
392 |
+
self,
|
393 |
+
sampling_rate,
|
394 |
+
harmonic_num=0,
|
395 |
+
sine_amp=0.1,
|
396 |
+
add_noise_std=0.003,
|
397 |
+
voiced_threshod=0,
|
398 |
+
is_half=True,
|
399 |
+
):
|
400 |
+
super(SourceModuleHnNSF, self).__init__()
|
401 |
+
|
402 |
+
self.sine_amp = sine_amp
|
403 |
+
self.noise_std = add_noise_std
|
404 |
+
self.is_half = is_half
|
405 |
+
# to produce sine waveforms
|
406 |
+
self.l_sin_gen = SineGen(
|
407 |
+
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
|
408 |
+
)
|
409 |
+
|
410 |
+
# to merge source harmonics into a single excitation
|
411 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
412 |
+
self.l_tanh = torch.nn.Tanh()
|
413 |
+
|
414 |
+
def forward(self, x, upp=None):
|
415 |
+
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
|
416 |
+
if self.is_half:
|
417 |
+
sine_wavs = sine_wavs.half()
|
418 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
419 |
+
return sine_merge, None, None # noise, uv
|
420 |
+
|
421 |
+
|
422 |
+
class GeneratorNSF(torch.nn.Module):
|
423 |
+
def __init__(
|
424 |
+
self,
|
425 |
+
initial_channel,
|
426 |
+
resblock,
|
427 |
+
resblock_kernel_sizes,
|
428 |
+
resblock_dilation_sizes,
|
429 |
+
upsample_rates,
|
430 |
+
upsample_initial_channel,
|
431 |
+
upsample_kernel_sizes,
|
432 |
+
gin_channels,
|
433 |
+
sr,
|
434 |
+
is_half=False,
|
435 |
+
):
|
436 |
+
super(GeneratorNSF, self).__init__()
|
437 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
438 |
+
self.num_upsamples = len(upsample_rates)
|
439 |
+
|
440 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
441 |
+
self.m_source = SourceModuleHnNSF(
|
442 |
+
sampling_rate=sr, harmonic_num=0, is_half=is_half
|
443 |
+
)
|
444 |
+
self.noise_convs = nn.ModuleList()
|
445 |
+
self.conv_pre = Conv1d(
|
446 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
447 |
+
)
|
448 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
449 |
+
|
450 |
+
self.ups = nn.ModuleList()
|
451 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
452 |
+
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
453 |
+
self.ups.append(
|
454 |
+
weight_norm(
|
455 |
+
ConvTranspose1d(
|
456 |
+
upsample_initial_channel // (2**i),
|
457 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
458 |
+
k,
|
459 |
+
u,
|
460 |
+
padding=(k - u) // 2,
|
461 |
+
)
|
462 |
+
)
|
463 |
+
)
|
464 |
+
if i + 1 < len(upsample_rates):
|
465 |
+
stride_f0 = np.prod(upsample_rates[i + 1 :])
|
466 |
+
self.noise_convs.append(
|
467 |
+
Conv1d(
|
468 |
+
1,
|
469 |
+
c_cur,
|
470 |
+
kernel_size=stride_f0 * 2,
|
471 |
+
stride=stride_f0,
|
472 |
+
padding=stride_f0 // 2,
|
473 |
+
)
|
474 |
+
)
|
475 |
+
else:
|
476 |
+
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
477 |
+
|
478 |
+
self.resblocks = nn.ModuleList()
|
479 |
+
for i in range(len(self.ups)):
|
480 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
481 |
+
for j, (k, d) in enumerate(
|
482 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
483 |
+
):
|
484 |
+
self.resblocks.append(resblock(ch, k, d))
|
485 |
+
|
486 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
487 |
+
self.ups.apply(init_weights)
|
488 |
+
|
489 |
+
if gin_channels != 0:
|
490 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
491 |
+
|
492 |
+
self.upp = np.prod(upsample_rates)
|
493 |
+
|
494 |
+
def forward(self, x, f0, g=None):
|
495 |
+
har_source, noi_source, uv = self.m_source(f0, self.upp)
|
496 |
+
har_source = har_source.transpose(1, 2)
|
497 |
+
x = self.conv_pre(x)
|
498 |
+
if g is not None:
|
499 |
+
x = x + self.cond(g)
|
500 |
+
|
501 |
+
for i in range(self.num_upsamples):
|
502 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
503 |
+
x = self.ups[i](x)
|
504 |
+
x_source = self.noise_convs[i](har_source)
|
505 |
+
x = x + x_source
|
506 |
+
xs = None
|
507 |
+
for j in range(self.num_kernels):
|
508 |
+
if xs is None:
|
509 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
510 |
+
else:
|
511 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
512 |
+
x = xs / self.num_kernels
|
513 |
+
x = F.leaky_relu(x)
|
514 |
+
x = self.conv_post(x)
|
515 |
+
x = torch.tanh(x)
|
516 |
+
return x
|
517 |
+
|
518 |
+
def remove_weight_norm(self):
|
519 |
+
for l in self.ups:
|
520 |
+
remove_weight_norm(l)
|
521 |
+
for l in self.resblocks:
|
522 |
+
l.remove_weight_norm()
|
523 |
+
|
524 |
+
|
525 |
+
sr2sr = {
|
526 |
+
"32k": 32000,
|
527 |
+
"40k": 40000,
|
528 |
+
"48k": 48000,
|
529 |
+
}
|
530 |
+
|
531 |
+
|
532 |
+
class SynthesizerTrnMsNSFsidM(nn.Module):
|
533 |
+
def __init__(
|
534 |
+
self,
|
535 |
+
spec_channels,
|
536 |
+
segment_size,
|
537 |
+
inter_channels,
|
538 |
+
hidden_channels,
|
539 |
+
filter_channels,
|
540 |
+
n_heads,
|
541 |
+
n_layers,
|
542 |
+
kernel_size,
|
543 |
+
p_dropout,
|
544 |
+
resblock,
|
545 |
+
resblock_kernel_sizes,
|
546 |
+
resblock_dilation_sizes,
|
547 |
+
upsample_rates,
|
548 |
+
upsample_initial_channel,
|
549 |
+
upsample_kernel_sizes,
|
550 |
+
spk_embed_dim,
|
551 |
+
gin_channels,
|
552 |
+
sr,
|
553 |
+
version,
|
554 |
+
**kwargs,
|
555 |
+
):
|
556 |
+
super().__init__()
|
557 |
+
if type(sr) == type("strr"):
|
558 |
+
sr = sr2sr[sr]
|
559 |
+
self.spec_channels = spec_channels
|
560 |
+
self.inter_channels = inter_channels
|
561 |
+
self.hidden_channels = hidden_channels
|
562 |
+
self.filter_channels = filter_channels
|
563 |
+
self.n_heads = n_heads
|
564 |
+
self.n_layers = n_layers
|
565 |
+
self.kernel_size = kernel_size
|
566 |
+
self.p_dropout = p_dropout
|
567 |
+
self.resblock = resblock
|
568 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
569 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
570 |
+
self.upsample_rates = upsample_rates
|
571 |
+
self.upsample_initial_channel = upsample_initial_channel
|
572 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
573 |
+
self.segment_size = segment_size
|
574 |
+
self.gin_channels = gin_channels
|
575 |
+
# self.hop_length = hop_length#
|
576 |
+
self.spk_embed_dim = spk_embed_dim
|
577 |
+
if version == "v1":
|
578 |
+
self.enc_p = TextEncoder256(
|
579 |
+
inter_channels,
|
580 |
+
hidden_channels,
|
581 |
+
filter_channels,
|
582 |
+
n_heads,
|
583 |
+
n_layers,
|
584 |
+
kernel_size,
|
585 |
+
p_dropout,
|
586 |
+
)
|
587 |
+
else:
|
588 |
+
self.enc_p = TextEncoder768(
|
589 |
+
inter_channels,
|
590 |
+
hidden_channels,
|
591 |
+
filter_channels,
|
592 |
+
n_heads,
|
593 |
+
n_layers,
|
594 |
+
kernel_size,
|
595 |
+
p_dropout,
|
596 |
+
)
|
597 |
+
self.dec = GeneratorNSF(
|
598 |
+
inter_channels,
|
599 |
+
resblock,
|
600 |
+
resblock_kernel_sizes,
|
601 |
+
resblock_dilation_sizes,
|
602 |
+
upsample_rates,
|
603 |
+
upsample_initial_channel,
|
604 |
+
upsample_kernel_sizes,
|
605 |
+
gin_channels=gin_channels,
|
606 |
+
sr=sr,
|
607 |
+
is_half=kwargs["is_half"],
|
608 |
+
)
|
609 |
+
self.enc_q = PosteriorEncoder(
|
610 |
+
spec_channels,
|
611 |
+
inter_channels,
|
612 |
+
hidden_channels,
|
613 |
+
5,
|
614 |
+
1,
|
615 |
+
16,
|
616 |
+
gin_channels=gin_channels,
|
617 |
+
)
|
618 |
+
self.flow = ResidualCouplingBlock(
|
619 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
620 |
+
)
|
621 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
622 |
+
self.speaker_map = None
|
623 |
+
logger.debug(
|
624 |
+
f"gin_channels: {gin_channels}, self.spk_embed_dim: {self.spk_embed_dim}"
|
625 |
+
)
|
626 |
+
|
627 |
+
def remove_weight_norm(self):
|
628 |
+
self.dec.remove_weight_norm()
|
629 |
+
self.flow.remove_weight_norm()
|
630 |
+
self.enc_q.remove_weight_norm()
|
631 |
+
|
632 |
+
def construct_spkmixmap(self, n_speaker):
|
633 |
+
self.speaker_map = torch.zeros((n_speaker, 1, 1, self.gin_channels))
|
634 |
+
for i in range(n_speaker):
|
635 |
+
self.speaker_map[i] = self.emb_g(torch.LongTensor([[i]]))
|
636 |
+
self.speaker_map = self.speaker_map.unsqueeze(0)
|
637 |
+
|
638 |
+
def forward(self, phone, phone_lengths, pitch, nsff0, g, rnd, max_len=None):
|
639 |
+
if self.speaker_map is not None: # [N, S] * [S, B, 1, H]
|
640 |
+
g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
|
641 |
+
g = g * self.speaker_map # [N, S, B, 1, H]
|
642 |
+
g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
|
643 |
+
g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
|
644 |
+
else:
|
645 |
+
g = g.unsqueeze(0)
|
646 |
+
g = self.emb_g(g).transpose(1, 2)
|
647 |
+
|
648 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
649 |
+
z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask
|
650 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
651 |
+
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
652 |
+
return o
|
653 |
+
|
654 |
+
|
655 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
656 |
+
def __init__(self, use_spectral_norm=False):
|
657 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
658 |
+
periods = [2, 3, 5, 7, 11, 17]
|
659 |
+
# periods = [3, 5, 7, 11, 17, 23, 37]
|
660 |
+
|
661 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
662 |
+
discs = discs + [
|
663 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
664 |
+
]
|
665 |
+
self.discriminators = nn.ModuleList(discs)
|
666 |
+
|
667 |
+
def forward(self, y, y_hat):
|
668 |
+
y_d_rs = [] #
|
669 |
+
y_d_gs = []
|
670 |
+
fmap_rs = []
|
671 |
+
fmap_gs = []
|
672 |
+
for i, d in enumerate(self.discriminators):
|
673 |
+
y_d_r, fmap_r = d(y)
|
674 |
+
y_d_g, fmap_g = d(y_hat)
|
675 |
+
# for j in range(len(fmap_r)):
|
676 |
+
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
677 |
+
y_d_rs.append(y_d_r)
|
678 |
+
y_d_gs.append(y_d_g)
|
679 |
+
fmap_rs.append(fmap_r)
|
680 |
+
fmap_gs.append(fmap_g)
|
681 |
+
|
682 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
683 |
+
|
684 |
+
|
685 |
+
class MultiPeriodDiscriminatorV2(torch.nn.Module):
|
686 |
+
def __init__(self, use_spectral_norm=False):
|
687 |
+
super(MultiPeriodDiscriminatorV2, self).__init__()
|
688 |
+
# periods = [2, 3, 5, 7, 11, 17]
|
689 |
+
periods = [2, 3, 5, 7, 11, 17, 23, 37]
|
690 |
+
|
691 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
692 |
+
discs = discs + [
|
693 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
694 |
+
]
|
695 |
+
self.discriminators = nn.ModuleList(discs)
|
696 |
+
|
697 |
+
def forward(self, y, y_hat):
|
698 |
+
y_d_rs = [] #
|
699 |
+
y_d_gs = []
|
700 |
+
fmap_rs = []
|
701 |
+
fmap_gs = []
|
702 |
+
for i, d in enumerate(self.discriminators):
|
703 |
+
y_d_r, fmap_r = d(y)
|
704 |
+
y_d_g, fmap_g = d(y_hat)
|
705 |
+
# for j in range(len(fmap_r)):
|
706 |
+
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
707 |
+
y_d_rs.append(y_d_r)
|
708 |
+
y_d_gs.append(y_d_g)
|
709 |
+
fmap_rs.append(fmap_r)
|
710 |
+
fmap_gs.append(fmap_g)
|
711 |
+
|
712 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
713 |
+
|
714 |
+
|
715 |
+
class DiscriminatorS(torch.nn.Module):
|
716 |
+
def __init__(self, use_spectral_norm=False):
|
717 |
+
super(DiscriminatorS, self).__init__()
|
718 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
719 |
+
self.convs = nn.ModuleList(
|
720 |
+
[
|
721 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
722 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
723 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
724 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
725 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
726 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
727 |
+
]
|
728 |
+
)
|
729 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
730 |
+
|
731 |
+
def forward(self, x):
|
732 |
+
fmap = []
|
733 |
+
|
734 |
+
for l in self.convs:
|
735 |
+
x = l(x)
|
736 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
737 |
+
fmap.append(x)
|
738 |
+
x = self.conv_post(x)
|
739 |
+
fmap.append(x)
|
740 |
+
x = torch.flatten(x, 1, -1)
|
741 |
+
|
742 |
+
return x, fmap
|
743 |
+
|
744 |
+
|
745 |
+
class DiscriminatorP(torch.nn.Module):
|
746 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
747 |
+
super(DiscriminatorP, self).__init__()
|
748 |
+
self.period = period
|
749 |
+
self.use_spectral_norm = use_spectral_norm
|
750 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
751 |
+
self.convs = nn.ModuleList(
|
752 |
+
[
|
753 |
+
norm_f(
|
754 |
+
Conv2d(
|
755 |
+
1,
|
756 |
+
32,
|
757 |
+
(kernel_size, 1),
|
758 |
+
(stride, 1),
|
759 |
+
padding=(get_padding(kernel_size, 1), 0),
|
760 |
+
)
|
761 |
+
),
|
762 |
+
norm_f(
|
763 |
+
Conv2d(
|
764 |
+
32,
|
765 |
+
128,
|
766 |
+
(kernel_size, 1),
|
767 |
+
(stride, 1),
|
768 |
+
padding=(get_padding(kernel_size, 1), 0),
|
769 |
+
)
|
770 |
+
),
|
771 |
+
norm_f(
|
772 |
+
Conv2d(
|
773 |
+
128,
|
774 |
+
512,
|
775 |
+
(kernel_size, 1),
|
776 |
+
(stride, 1),
|
777 |
+
padding=(get_padding(kernel_size, 1), 0),
|
778 |
+
)
|
779 |
+
),
|
780 |
+
norm_f(
|
781 |
+
Conv2d(
|
782 |
+
512,
|
783 |
+
1024,
|
784 |
+
(kernel_size, 1),
|
785 |
+
(stride, 1),
|
786 |
+
padding=(get_padding(kernel_size, 1), 0),
|
787 |
+
)
|
788 |
+
),
|
789 |
+
norm_f(
|
790 |
+
Conv2d(
|
791 |
+
1024,
|
792 |
+
1024,
|
793 |
+
(kernel_size, 1),
|
794 |
+
1,
|
795 |
+
padding=(get_padding(kernel_size, 1), 0),
|
796 |
+
)
|
797 |
+
),
|
798 |
+
]
|
799 |
+
)
|
800 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
801 |
+
|
802 |
+
def forward(self, x):
|
803 |
+
fmap = []
|
804 |
+
|
805 |
+
# 1d to 2d
|
806 |
+
b, c, t = x.shape
|
807 |
+
if t % self.period != 0: # pad first
|
808 |
+
n_pad = self.period - (t % self.period)
|
809 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
810 |
+
t = t + n_pad
|
811 |
+
x = x.view(b, c, t // self.period, self.period)
|
812 |
+
|
813 |
+
for l in self.convs:
|
814 |
+
x = l(x)
|
815 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
816 |
+
fmap.append(x)
|
817 |
+
x = self.conv_post(x)
|
818 |
+
fmap.append(x)
|
819 |
+
x = torch.flatten(x, 1, -1)
|
820 |
+
|
821 |
+
return x, fmap
|
infer/lib/infer_pack/modules.py
ADDED
@@ -0,0 +1,615 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
from typing import Optional, Tuple
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import scipy
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
|
10 |
+
from torch.nn import functional as F
|
11 |
+
from torch.nn.utils import remove_weight_norm, weight_norm
|
12 |
+
|
13 |
+
from infer.lib.infer_pack import commons
|
14 |
+
from infer.lib.infer_pack.commons import get_padding, init_weights
|
15 |
+
from infer.lib.infer_pack.transforms import piecewise_rational_quadratic_transform
|
16 |
+
|
17 |
+
LRELU_SLOPE = 0.1
|
18 |
+
|
19 |
+
|
20 |
+
class LayerNorm(nn.Module):
|
21 |
+
def __init__(self, channels, eps=1e-5):
|
22 |
+
super(LayerNorm, self).__init__()
|
23 |
+
self.channels = channels
|
24 |
+
self.eps = eps
|
25 |
+
|
26 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
27 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
x = x.transpose(1, -1)
|
31 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
32 |
+
return x.transpose(1, -1)
|
33 |
+
|
34 |
+
|
35 |
+
class ConvReluNorm(nn.Module):
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
in_channels,
|
39 |
+
hidden_channels,
|
40 |
+
out_channels,
|
41 |
+
kernel_size,
|
42 |
+
n_layers,
|
43 |
+
p_dropout,
|
44 |
+
):
|
45 |
+
super(ConvReluNorm, self).__init__()
|
46 |
+
self.in_channels = in_channels
|
47 |
+
self.hidden_channels = hidden_channels
|
48 |
+
self.out_channels = out_channels
|
49 |
+
self.kernel_size = kernel_size
|
50 |
+
self.n_layers = n_layers
|
51 |
+
self.p_dropout = float(p_dropout)
|
52 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
53 |
+
|
54 |
+
self.conv_layers = nn.ModuleList()
|
55 |
+
self.norm_layers = nn.ModuleList()
|
56 |
+
self.conv_layers.append(
|
57 |
+
nn.Conv1d(
|
58 |
+
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
|
59 |
+
)
|
60 |
+
)
|
61 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
62 |
+
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(float(p_dropout)))
|
63 |
+
for _ in range(n_layers - 1):
|
64 |
+
self.conv_layers.append(
|
65 |
+
nn.Conv1d(
|
66 |
+
hidden_channels,
|
67 |
+
hidden_channels,
|
68 |
+
kernel_size,
|
69 |
+
padding=kernel_size // 2,
|
70 |
+
)
|
71 |
+
)
|
72 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
73 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
74 |
+
self.proj.weight.data.zero_()
|
75 |
+
self.proj.bias.data.zero_()
|
76 |
+
|
77 |
+
def forward(self, x, x_mask):
|
78 |
+
x_org = x
|
79 |
+
for i in range(self.n_layers):
|
80 |
+
x = self.conv_layers[i](x * x_mask)
|
81 |
+
x = self.norm_layers[i](x)
|
82 |
+
x = self.relu_drop(x)
|
83 |
+
x = x_org + self.proj(x)
|
84 |
+
return x * x_mask
|
85 |
+
|
86 |
+
|
87 |
+
class DDSConv(nn.Module):
|
88 |
+
"""
|
89 |
+
Dialted and Depth-Separable Convolution
|
90 |
+
"""
|
91 |
+
|
92 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
93 |
+
super(DDSConv, self).__init__()
|
94 |
+
self.channels = channels
|
95 |
+
self.kernel_size = kernel_size
|
96 |
+
self.n_layers = n_layers
|
97 |
+
self.p_dropout = float(p_dropout)
|
98 |
+
|
99 |
+
self.drop = nn.Dropout(float(p_dropout))
|
100 |
+
self.convs_sep = nn.ModuleList()
|
101 |
+
self.convs_1x1 = nn.ModuleList()
|
102 |
+
self.norms_1 = nn.ModuleList()
|
103 |
+
self.norms_2 = nn.ModuleList()
|
104 |
+
for i in range(n_layers):
|
105 |
+
dilation = kernel_size**i
|
106 |
+
padding = (kernel_size * dilation - dilation) // 2
|
107 |
+
self.convs_sep.append(
|
108 |
+
nn.Conv1d(
|
109 |
+
channels,
|
110 |
+
channels,
|
111 |
+
kernel_size,
|
112 |
+
groups=channels,
|
113 |
+
dilation=dilation,
|
114 |
+
padding=padding,
|
115 |
+
)
|
116 |
+
)
|
117 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
118 |
+
self.norms_1.append(LayerNorm(channels))
|
119 |
+
self.norms_2.append(LayerNorm(channels))
|
120 |
+
|
121 |
+
def forward(self, x, x_mask, g: Optional[torch.Tensor] = None):
|
122 |
+
if g is not None:
|
123 |
+
x = x + g
|
124 |
+
for i in range(self.n_layers):
|
125 |
+
y = self.convs_sep[i](x * x_mask)
|
126 |
+
y = self.norms_1[i](y)
|
127 |
+
y = F.gelu(y)
|
128 |
+
y = self.convs_1x1[i](y)
|
129 |
+
y = self.norms_2[i](y)
|
130 |
+
y = F.gelu(y)
|
131 |
+
y = self.drop(y)
|
132 |
+
x = x + y
|
133 |
+
return x * x_mask
|
134 |
+
|
135 |
+
|
136 |
+
class WN(torch.nn.Module):
|
137 |
+
def __init__(
|
138 |
+
self,
|
139 |
+
hidden_channels,
|
140 |
+
kernel_size,
|
141 |
+
dilation_rate,
|
142 |
+
n_layers,
|
143 |
+
gin_channels=0,
|
144 |
+
p_dropout=0,
|
145 |
+
):
|
146 |
+
super(WN, self).__init__()
|
147 |
+
assert kernel_size % 2 == 1
|
148 |
+
self.hidden_channels = hidden_channels
|
149 |
+
self.kernel_size = (kernel_size,)
|
150 |
+
self.dilation_rate = dilation_rate
|
151 |
+
self.n_layers = n_layers
|
152 |
+
self.gin_channels = gin_channels
|
153 |
+
self.p_dropout = float(p_dropout)
|
154 |
+
|
155 |
+
self.in_layers = torch.nn.ModuleList()
|
156 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
157 |
+
self.drop = nn.Dropout(float(p_dropout))
|
158 |
+
|
159 |
+
if gin_channels != 0:
|
160 |
+
cond_layer = torch.nn.Conv1d(
|
161 |
+
gin_channels, 2 * hidden_channels * n_layers, 1
|
162 |
+
)
|
163 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
|
164 |
+
|
165 |
+
for i in range(n_layers):
|
166 |
+
dilation = dilation_rate**i
|
167 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
168 |
+
in_layer = torch.nn.Conv1d(
|
169 |
+
hidden_channels,
|
170 |
+
2 * hidden_channels,
|
171 |
+
kernel_size,
|
172 |
+
dilation=dilation,
|
173 |
+
padding=padding,
|
174 |
+
)
|
175 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
|
176 |
+
self.in_layers.append(in_layer)
|
177 |
+
|
178 |
+
# last one is not necessary
|
179 |
+
if i < n_layers - 1:
|
180 |
+
res_skip_channels = 2 * hidden_channels
|
181 |
+
else:
|
182 |
+
res_skip_channels = hidden_channels
|
183 |
+
|
184 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
185 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
|
186 |
+
self.res_skip_layers.append(res_skip_layer)
|
187 |
+
|
188 |
+
def forward(
|
189 |
+
self, x: torch.Tensor, x_mask: torch.Tensor, g: Optional[torch.Tensor] = None
|
190 |
+
):
|
191 |
+
output = torch.zeros_like(x)
|
192 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
193 |
+
|
194 |
+
if g is not None:
|
195 |
+
g = self.cond_layer(g)
|
196 |
+
|
197 |
+
for i, (in_layer, res_skip_layer) in enumerate(
|
198 |
+
zip(self.in_layers, self.res_skip_layers)
|
199 |
+
):
|
200 |
+
x_in = in_layer(x)
|
201 |
+
if g is not None:
|
202 |
+
cond_offset = i * 2 * self.hidden_channels
|
203 |
+
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
204 |
+
else:
|
205 |
+
g_l = torch.zeros_like(x_in)
|
206 |
+
|
207 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
|
208 |
+
acts = self.drop(acts)
|
209 |
+
|
210 |
+
res_skip_acts = res_skip_layer(acts)
|
211 |
+
if i < self.n_layers - 1:
|
212 |
+
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
213 |
+
x = (x + res_acts) * x_mask
|
214 |
+
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
215 |
+
else:
|
216 |
+
output = output + res_skip_acts
|
217 |
+
return output * x_mask
|
218 |
+
|
219 |
+
def remove_weight_norm(self):
|
220 |
+
if self.gin_channels != 0:
|
221 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
222 |
+
for l in self.in_layers:
|
223 |
+
torch.nn.utils.remove_weight_norm(l)
|
224 |
+
for l in self.res_skip_layers:
|
225 |
+
torch.nn.utils.remove_weight_norm(l)
|
226 |
+
|
227 |
+
def __prepare_scriptable__(self):
|
228 |
+
if self.gin_channels != 0:
|
229 |
+
for hook in self.cond_layer._forward_pre_hooks.values():
|
230 |
+
if (
|
231 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
232 |
+
and hook.__class__.__name__ == "WeightNorm"
|
233 |
+
):
|
234 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
235 |
+
for l in self.in_layers:
|
236 |
+
for hook in l._forward_pre_hooks.values():
|
237 |
+
if (
|
238 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
239 |
+
and hook.__class__.__name__ == "WeightNorm"
|
240 |
+
):
|
241 |
+
torch.nn.utils.remove_weight_norm(l)
|
242 |
+
for l in self.res_skip_layers:
|
243 |
+
for hook in l._forward_pre_hooks.values():
|
244 |
+
if (
|
245 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
246 |
+
and hook.__class__.__name__ == "WeightNorm"
|
247 |
+
):
|
248 |
+
torch.nn.utils.remove_weight_norm(l)
|
249 |
+
return self
|
250 |
+
|
251 |
+
|
252 |
+
class ResBlock1(torch.nn.Module):
|
253 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
254 |
+
super(ResBlock1, self).__init__()
|
255 |
+
self.convs1 = nn.ModuleList(
|
256 |
+
[
|
257 |
+
weight_norm(
|
258 |
+
Conv1d(
|
259 |
+
channels,
|
260 |
+
channels,
|
261 |
+
kernel_size,
|
262 |
+
1,
|
263 |
+
dilation=dilation[0],
|
264 |
+
padding=get_padding(kernel_size, dilation[0]),
|
265 |
+
)
|
266 |
+
),
|
267 |
+
weight_norm(
|
268 |
+
Conv1d(
|
269 |
+
channels,
|
270 |
+
channels,
|
271 |
+
kernel_size,
|
272 |
+
1,
|
273 |
+
dilation=dilation[1],
|
274 |
+
padding=get_padding(kernel_size, dilation[1]),
|
275 |
+
)
|
276 |
+
),
|
277 |
+
weight_norm(
|
278 |
+
Conv1d(
|
279 |
+
channels,
|
280 |
+
channels,
|
281 |
+
kernel_size,
|
282 |
+
1,
|
283 |
+
dilation=dilation[2],
|
284 |
+
padding=get_padding(kernel_size, dilation[2]),
|
285 |
+
)
|
286 |
+
),
|
287 |
+
]
|
288 |
+
)
|
289 |
+
self.convs1.apply(init_weights)
|
290 |
+
|
291 |
+
self.convs2 = nn.ModuleList(
|
292 |
+
[
|
293 |
+
weight_norm(
|
294 |
+
Conv1d(
|
295 |
+
channels,
|
296 |
+
channels,
|
297 |
+
kernel_size,
|
298 |
+
1,
|
299 |
+
dilation=1,
|
300 |
+
padding=get_padding(kernel_size, 1),
|
301 |
+
)
|
302 |
+
),
|
303 |
+
weight_norm(
|
304 |
+
Conv1d(
|
305 |
+
channels,
|
306 |
+
channels,
|
307 |
+
kernel_size,
|
308 |
+
1,
|
309 |
+
dilation=1,
|
310 |
+
padding=get_padding(kernel_size, 1),
|
311 |
+
)
|
312 |
+
),
|
313 |
+
weight_norm(
|
314 |
+
Conv1d(
|
315 |
+
channels,
|
316 |
+
channels,
|
317 |
+
kernel_size,
|
318 |
+
1,
|
319 |
+
dilation=1,
|
320 |
+
padding=get_padding(kernel_size, 1),
|
321 |
+
)
|
322 |
+
),
|
323 |
+
]
|
324 |
+
)
|
325 |
+
self.convs2.apply(init_weights)
|
326 |
+
self.lrelu_slope = LRELU_SLOPE
|
327 |
+
|
328 |
+
def forward(self, x: torch.Tensor, x_mask: Optional[torch.Tensor] = None):
|
329 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
330 |
+
xt = F.leaky_relu(x, self.lrelu_slope)
|
331 |
+
if x_mask is not None:
|
332 |
+
xt = xt * x_mask
|
333 |
+
xt = c1(xt)
|
334 |
+
xt = F.leaky_relu(xt, self.lrelu_slope)
|
335 |
+
if x_mask is not None:
|
336 |
+
xt = xt * x_mask
|
337 |
+
xt = c2(xt)
|
338 |
+
x = xt + x
|
339 |
+
if x_mask is not None:
|
340 |
+
x = x * x_mask
|
341 |
+
return x
|
342 |
+
|
343 |
+
def remove_weight_norm(self):
|
344 |
+
for l in self.convs1:
|
345 |
+
remove_weight_norm(l)
|
346 |
+
for l in self.convs2:
|
347 |
+
remove_weight_norm(l)
|
348 |
+
|
349 |
+
def __prepare_scriptable__(self):
|
350 |
+
for l in self.convs1:
|
351 |
+
for hook in l._forward_pre_hooks.values():
|
352 |
+
if (
|
353 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
354 |
+
and hook.__class__.__name__ == "WeightNorm"
|
355 |
+
):
|
356 |
+
torch.nn.utils.remove_weight_norm(l)
|
357 |
+
for l in self.convs2:
|
358 |
+
for hook in l._forward_pre_hooks.values():
|
359 |
+
if (
|
360 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
361 |
+
and hook.__class__.__name__ == "WeightNorm"
|
362 |
+
):
|
363 |
+
torch.nn.utils.remove_weight_norm(l)
|
364 |
+
return self
|
365 |
+
|
366 |
+
|
367 |
+
class ResBlock2(torch.nn.Module):
|
368 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
369 |
+
super(ResBlock2, self).__init__()
|
370 |
+
self.convs = nn.ModuleList(
|
371 |
+
[
|
372 |
+
weight_norm(
|
373 |
+
Conv1d(
|
374 |
+
channels,
|
375 |
+
channels,
|
376 |
+
kernel_size,
|
377 |
+
1,
|
378 |
+
dilation=dilation[0],
|
379 |
+
padding=get_padding(kernel_size, dilation[0]),
|
380 |
+
)
|
381 |
+
),
|
382 |
+
weight_norm(
|
383 |
+
Conv1d(
|
384 |
+
channels,
|
385 |
+
channels,
|
386 |
+
kernel_size,
|
387 |
+
1,
|
388 |
+
dilation=dilation[1],
|
389 |
+
padding=get_padding(kernel_size, dilation[1]),
|
390 |
+
)
|
391 |
+
),
|
392 |
+
]
|
393 |
+
)
|
394 |
+
self.convs.apply(init_weights)
|
395 |
+
self.lrelu_slope = LRELU_SLOPE
|
396 |
+
|
397 |
+
def forward(self, x, x_mask: Optional[torch.Tensor] = None):
|
398 |
+
for c in self.convs:
|
399 |
+
xt = F.leaky_relu(x, self.lrelu_slope)
|
400 |
+
if x_mask is not None:
|
401 |
+
xt = xt * x_mask
|
402 |
+
xt = c(xt)
|
403 |
+
x = xt + x
|
404 |
+
if x_mask is not None:
|
405 |
+
x = x * x_mask
|
406 |
+
return x
|
407 |
+
|
408 |
+
def remove_weight_norm(self):
|
409 |
+
for l in self.convs:
|
410 |
+
remove_weight_norm(l)
|
411 |
+
|
412 |
+
def __prepare_scriptable__(self):
|
413 |
+
for l in self.convs:
|
414 |
+
for hook in l._forward_pre_hooks.values():
|
415 |
+
if (
|
416 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
417 |
+
and hook.__class__.__name__ == "WeightNorm"
|
418 |
+
):
|
419 |
+
torch.nn.utils.remove_weight_norm(l)
|
420 |
+
return self
|
421 |
+
|
422 |
+
|
423 |
+
class Log(nn.Module):
|
424 |
+
def forward(
|
425 |
+
self,
|
426 |
+
x: torch.Tensor,
|
427 |
+
x_mask: torch.Tensor,
|
428 |
+
g: Optional[torch.Tensor] = None,
|
429 |
+
reverse: bool = False,
|
430 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
431 |
+
if not reverse:
|
432 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
433 |
+
logdet = torch.sum(-y, [1, 2])
|
434 |
+
return y, logdet
|
435 |
+
else:
|
436 |
+
x = torch.exp(x) * x_mask
|
437 |
+
return x
|
438 |
+
|
439 |
+
|
440 |
+
class Flip(nn.Module):
|
441 |
+
# torch.jit.script() Compiled functions \
|
442 |
+
# can't take variable number of arguments or \
|
443 |
+
# use keyword-only arguments with defaults
|
444 |
+
def forward(
|
445 |
+
self,
|
446 |
+
x: torch.Tensor,
|
447 |
+
x_mask: torch.Tensor,
|
448 |
+
g: Optional[torch.Tensor] = None,
|
449 |
+
reverse: bool = False,
|
450 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
451 |
+
x = torch.flip(x, [1])
|
452 |
+
if not reverse:
|
453 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
454 |
+
return x, logdet
|
455 |
+
else:
|
456 |
+
return x, torch.zeros([1], device=x.device)
|
457 |
+
|
458 |
+
|
459 |
+
class ElementwiseAffine(nn.Module):
|
460 |
+
def __init__(self, channels):
|
461 |
+
super(ElementwiseAffine, self).__init__()
|
462 |
+
self.channels = channels
|
463 |
+
self.m = nn.Parameter(torch.zeros(channels, 1))
|
464 |
+
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
465 |
+
|
466 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
467 |
+
if not reverse:
|
468 |
+
y = self.m + torch.exp(self.logs) * x
|
469 |
+
y = y * x_mask
|
470 |
+
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
471 |
+
return y, logdet
|
472 |
+
else:
|
473 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
474 |
+
return x
|
475 |
+
|
476 |
+
|
477 |
+
class ResidualCouplingLayer(nn.Module):
|
478 |
+
def __init__(
|
479 |
+
self,
|
480 |
+
channels,
|
481 |
+
hidden_channels,
|
482 |
+
kernel_size,
|
483 |
+
dilation_rate,
|
484 |
+
n_layers,
|
485 |
+
p_dropout=0,
|
486 |
+
gin_channels=0,
|
487 |
+
mean_only=False,
|
488 |
+
):
|
489 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
490 |
+
super(ResidualCouplingLayer, self).__init__()
|
491 |
+
self.channels = channels
|
492 |
+
self.hidden_channels = hidden_channels
|
493 |
+
self.kernel_size = kernel_size
|
494 |
+
self.dilation_rate = dilation_rate
|
495 |
+
self.n_layers = n_layers
|
496 |
+
self.half_channels = channels // 2
|
497 |
+
self.mean_only = mean_only
|
498 |
+
|
499 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
500 |
+
self.enc = WN(
|
501 |
+
hidden_channels,
|
502 |
+
kernel_size,
|
503 |
+
dilation_rate,
|
504 |
+
n_layers,
|
505 |
+
p_dropout=float(p_dropout),
|
506 |
+
gin_channels=gin_channels,
|
507 |
+
)
|
508 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
509 |
+
self.post.weight.data.zero_()
|
510 |
+
self.post.bias.data.zero_()
|
511 |
+
|
512 |
+
def forward(
|
513 |
+
self,
|
514 |
+
x: torch.Tensor,
|
515 |
+
x_mask: torch.Tensor,
|
516 |
+
g: Optional[torch.Tensor] = None,
|
517 |
+
reverse: bool = False,
|
518 |
+
):
|
519 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
520 |
+
h = self.pre(x0) * x_mask
|
521 |
+
h = self.enc(h, x_mask, g=g)
|
522 |
+
stats = self.post(h) * x_mask
|
523 |
+
if not self.mean_only:
|
524 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
525 |
+
else:
|
526 |
+
m = stats
|
527 |
+
logs = torch.zeros_like(m)
|
528 |
+
|
529 |
+
if not reverse:
|
530 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
531 |
+
x = torch.cat([x0, x1], 1)
|
532 |
+
logdet = torch.sum(logs, [1, 2])
|
533 |
+
return x, logdet
|
534 |
+
else:
|
535 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
536 |
+
x = torch.cat([x0, x1], 1)
|
537 |
+
return x, torch.zeros([1])
|
538 |
+
|
539 |
+
def remove_weight_norm(self):
|
540 |
+
self.enc.remove_weight_norm()
|
541 |
+
|
542 |
+
def __prepare_scriptable__(self):
|
543 |
+
for hook in self.enc._forward_pre_hooks.values():
|
544 |
+
if (
|
545 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
546 |
+
and hook.__class__.__name__ == "WeightNorm"
|
547 |
+
):
|
548 |
+
torch.nn.utils.remove_weight_norm(self.enc)
|
549 |
+
return self
|
550 |
+
|
551 |
+
|
552 |
+
class ConvFlow(nn.Module):
|
553 |
+
def __init__(
|
554 |
+
self,
|
555 |
+
in_channels,
|
556 |
+
filter_channels,
|
557 |
+
kernel_size,
|
558 |
+
n_layers,
|
559 |
+
num_bins=10,
|
560 |
+
tail_bound=5.0,
|
561 |
+
):
|
562 |
+
super(ConvFlow, self).__init__()
|
563 |
+
self.in_channels = in_channels
|
564 |
+
self.filter_channels = filter_channels
|
565 |
+
self.kernel_size = kernel_size
|
566 |
+
self.n_layers = n_layers
|
567 |
+
self.num_bins = num_bins
|
568 |
+
self.tail_bound = tail_bound
|
569 |
+
self.half_channels = in_channels // 2
|
570 |
+
|
571 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
572 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
573 |
+
self.proj = nn.Conv1d(
|
574 |
+
filter_channels, self.half_channels * (num_bins * 3 - 1), 1
|
575 |
+
)
|
576 |
+
self.proj.weight.data.zero_()
|
577 |
+
self.proj.bias.data.zero_()
|
578 |
+
|
579 |
+
def forward(
|
580 |
+
self,
|
581 |
+
x: torch.Tensor,
|
582 |
+
x_mask: torch.Tensor,
|
583 |
+
g: Optional[torch.Tensor] = None,
|
584 |
+
reverse=False,
|
585 |
+
):
|
586 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
587 |
+
h = self.pre(x0)
|
588 |
+
h = self.convs(h, x_mask, g=g)
|
589 |
+
h = self.proj(h) * x_mask
|
590 |
+
|
591 |
+
b, c, t = x0.shape
|
592 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
593 |
+
|
594 |
+
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
595 |
+
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
|
596 |
+
self.filter_channels
|
597 |
+
)
|
598 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
599 |
+
|
600 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(
|
601 |
+
x1,
|
602 |
+
unnormalized_widths,
|
603 |
+
unnormalized_heights,
|
604 |
+
unnormalized_derivatives,
|
605 |
+
inverse=reverse,
|
606 |
+
tails="linear",
|
607 |
+
tail_bound=self.tail_bound,
|
608 |
+
)
|
609 |
+
|
610 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
611 |
+
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
612 |
+
if not reverse:
|
613 |
+
return x, logdet
|
614 |
+
else:
|
615 |
+
return x
|
infer/lib/infer_pack/modules/F0Predictor/DioF0Predictor.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pyworld
|
3 |
+
|
4 |
+
from infer.lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
5 |
+
|
6 |
+
|
7 |
+
class DioF0Predictor(F0Predictor):
|
8 |
+
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
|
9 |
+
self.hop_length = hop_length
|
10 |
+
self.f0_min = f0_min
|
11 |
+
self.f0_max = f0_max
|
12 |
+
self.sampling_rate = sampling_rate
|
13 |
+
|
14 |
+
def interpolate_f0(self, f0):
|
15 |
+
"""
|
16 |
+
对F0进行插值处理
|
17 |
+
"""
|
18 |
+
|
19 |
+
data = np.reshape(f0, (f0.size, 1))
|
20 |
+
|
21 |
+
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
22 |
+
vuv_vector[data > 0.0] = 1.0
|
23 |
+
vuv_vector[data <= 0.0] = 0.0
|
24 |
+
|
25 |
+
ip_data = data
|
26 |
+
|
27 |
+
frame_number = data.size
|
28 |
+
last_value = 0.0
|
29 |
+
for i in range(frame_number):
|
30 |
+
if data[i] <= 0.0:
|
31 |
+
j = i + 1
|
32 |
+
for j in range(i + 1, frame_number):
|
33 |
+
if data[j] > 0.0:
|
34 |
+
break
|
35 |
+
if j < frame_number - 1:
|
36 |
+
if last_value > 0.0:
|
37 |
+
step = (data[j] - data[i - 1]) / float(j - i)
|
38 |
+
for k in range(i, j):
|
39 |
+
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
40 |
+
else:
|
41 |
+
for k in range(i, j):
|
42 |
+
ip_data[k] = data[j]
|
43 |
+
else:
|
44 |
+
for k in range(i, frame_number):
|
45 |
+
ip_data[k] = last_value
|
46 |
+
else:
|
47 |
+
ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
|
48 |
+
last_value = data[i]
|
49 |
+
|
50 |
+
return ip_data[:, 0], vuv_vector[:, 0]
|
51 |
+
|
52 |
+
def resize_f0(self, x, target_len):
|
53 |
+
source = np.array(x)
|
54 |
+
source[source < 0.001] = np.nan
|
55 |
+
target = np.interp(
|
56 |
+
np.arange(0, len(source) * target_len, len(source)) / target_len,
|
57 |
+
np.arange(0, len(source)),
|
58 |
+
source,
|
59 |
+
)
|
60 |
+
res = np.nan_to_num(target)
|
61 |
+
return res
|
62 |
+
|
63 |
+
def compute_f0(self, wav, p_len=None):
|
64 |
+
if p_len is None:
|
65 |
+
p_len = wav.shape[0] // self.hop_length
|
66 |
+
f0, t = pyworld.dio(
|
67 |
+
wav.astype(np.double),
|
68 |
+
fs=self.sampling_rate,
|
69 |
+
f0_floor=self.f0_min,
|
70 |
+
f0_ceil=self.f0_max,
|
71 |
+
frame_period=1000 * self.hop_length / self.sampling_rate,
|
72 |
+
)
|
73 |
+
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
|
74 |
+
for index, pitch in enumerate(f0):
|
75 |
+
f0[index] = round(pitch, 1)
|
76 |
+
return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
|
77 |
+
|
78 |
+
def compute_f0_uv(self, wav, p_len=None):
|
79 |
+
if p_len is None:
|
80 |
+
p_len = wav.shape[0] // self.hop_length
|
81 |
+
f0, t = pyworld.dio(
|
82 |
+
wav.astype(np.double),
|
83 |
+
fs=self.sampling_rate,
|
84 |
+
f0_floor=self.f0_min,
|
85 |
+
f0_ceil=self.f0_max,
|
86 |
+
frame_period=1000 * self.hop_length / self.sampling_rate,
|
87 |
+
)
|
88 |
+
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
|
89 |
+
for index, pitch in enumerate(f0):
|
90 |
+
f0[index] = round(pitch, 1)
|
91 |
+
return self.interpolate_f0(self.resize_f0(f0, p_len))
|
infer/lib/infer_pack/modules/F0Predictor/F0Predictor.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class F0Predictor(object):
|
2 |
+
def compute_f0(self, wav, p_len):
|
3 |
+
"""
|
4 |
+
input: wav:[signal_length]
|
5 |
+
p_len:int
|
6 |
+
output: f0:[signal_length//hop_length]
|
7 |
+
"""
|
8 |
+
pass
|
9 |
+
|
10 |
+
def compute_f0_uv(self, wav, p_len):
|
11 |
+
"""
|
12 |
+
input: wav:[signal_length]
|
13 |
+
p_len:int
|
14 |
+
output: f0:[signal_length//hop_length],uv:[signal_length//hop_length]
|
15 |
+
"""
|
16 |
+
pass
|
infer/lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pyworld
|
3 |
+
|
4 |
+
from infer.lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
5 |
+
|
6 |
+
|
7 |
+
class HarvestF0Predictor(F0Predictor):
|
8 |
+
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
|
9 |
+
self.hop_length = hop_length
|
10 |
+
self.f0_min = f0_min
|
11 |
+
self.f0_max = f0_max
|
12 |
+
self.sampling_rate = sampling_rate
|
13 |
+
|
14 |
+
def interpolate_f0(self, f0):
|
15 |
+
"""
|
16 |
+
对F0进行插值处理
|
17 |
+
"""
|
18 |
+
|
19 |
+
data = np.reshape(f0, (f0.size, 1))
|
20 |
+
|
21 |
+
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
22 |
+
vuv_vector[data > 0.0] = 1.0
|
23 |
+
vuv_vector[data <= 0.0] = 0.0
|
24 |
+
|
25 |
+
ip_data = data
|
26 |
+
|
27 |
+
frame_number = data.size
|
28 |
+
last_value = 0.0
|
29 |
+
for i in range(frame_number):
|
30 |
+
if data[i] <= 0.0:
|
31 |
+
j = i + 1
|
32 |
+
for j in range(i + 1, frame_number):
|
33 |
+
if data[j] > 0.0:
|
34 |
+
break
|
35 |
+
if j < frame_number - 1:
|
36 |
+
if last_value > 0.0:
|
37 |
+
step = (data[j] - data[i - 1]) / float(j - i)
|
38 |
+
for k in range(i, j):
|
39 |
+
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
40 |
+
else:
|
41 |
+
for k in range(i, j):
|
42 |
+
ip_data[k] = data[j]
|
43 |
+
else:
|
44 |
+
for k in range(i, frame_number):
|
45 |
+
ip_data[k] = last_value
|
46 |
+
else:
|
47 |
+
ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
|
48 |
+
last_value = data[i]
|
49 |
+
|
50 |
+
return ip_data[:, 0], vuv_vector[:, 0]
|
51 |
+
|
52 |
+
def resize_f0(self, x, target_len):
|
53 |
+
source = np.array(x)
|
54 |
+
source[source < 0.001] = np.nan
|
55 |
+
target = np.interp(
|
56 |
+
np.arange(0, len(source) * target_len, len(source)) / target_len,
|
57 |
+
np.arange(0, len(source)),
|
58 |
+
source,
|
59 |
+
)
|
60 |
+
res = np.nan_to_num(target)
|
61 |
+
return res
|
62 |
+
|
63 |
+
def compute_f0(self, wav, p_len=None):
|
64 |
+
if p_len is None:
|
65 |
+
p_len = wav.shape[0] // self.hop_length
|
66 |
+
f0, t = pyworld.harvest(
|
67 |
+
wav.astype(np.double),
|
68 |
+
fs=self.hop_length,
|
69 |
+
f0_ceil=self.f0_max,
|
70 |
+
f0_floor=self.f0_min,
|
71 |
+
frame_period=1000 * self.hop_length / self.sampling_rate,
|
72 |
+
)
|
73 |
+
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.fs)
|
74 |
+
return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
|
75 |
+
|
76 |
+
def compute_f0_uv(self, wav, p_len=None):
|
77 |
+
if p_len is None:
|
78 |
+
p_len = wav.shape[0] // self.hop_length
|
79 |
+
f0, t = pyworld.harvest(
|
80 |
+
wav.astype(np.double),
|
81 |
+
fs=self.sampling_rate,
|
82 |
+
f0_floor=self.f0_min,
|
83 |
+
f0_ceil=self.f0_max,
|
84 |
+
frame_period=1000 * self.hop_length / self.sampling_rate,
|
85 |
+
)
|
86 |
+
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
|
87 |
+
return self.interpolate_f0(self.resize_f0(f0, p_len))
|
infer/lib/infer_pack/modules/F0Predictor/PMF0Predictor.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import parselmouth
|
3 |
+
|
4 |
+
from infer.lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
5 |
+
|
6 |
+
|
7 |
+
class PMF0Predictor(F0Predictor):
|
8 |
+
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
|
9 |
+
self.hop_length = hop_length
|
10 |
+
self.f0_min = f0_min
|
11 |
+
self.f0_max = f0_max
|
12 |
+
self.sampling_rate = sampling_rate
|
13 |
+
|
14 |
+
def interpolate_f0(self, f0):
|
15 |
+
"""
|
16 |
+
对F0进行插值处理
|
17 |
+
"""
|
18 |
+
|
19 |
+
data = np.reshape(f0, (f0.size, 1))
|
20 |
+
|
21 |
+
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
22 |
+
vuv_vector[data > 0.0] = 1.0
|
23 |
+
vuv_vector[data <= 0.0] = 0.0
|
24 |
+
|
25 |
+
ip_data = data
|
26 |
+
|
27 |
+
frame_number = data.size
|
28 |
+
last_value = 0.0
|
29 |
+
for i in range(frame_number):
|
30 |
+
if data[i] <= 0.0:
|
31 |
+
j = i + 1
|
32 |
+
for j in range(i + 1, frame_number):
|
33 |
+
if data[j] > 0.0:
|
34 |
+
break
|
35 |
+
if j < frame_number - 1:
|
36 |
+
if last_value > 0.0:
|
37 |
+
step = (data[j] - data[i - 1]) / float(j - i)
|
38 |
+
for k in range(i, j):
|
39 |
+
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
40 |
+
else:
|
41 |
+
for k in range(i, j):
|
42 |
+
ip_data[k] = data[j]
|
43 |
+
else:
|
44 |
+
for k in range(i, frame_number):
|
45 |
+
ip_data[k] = last_value
|
46 |
+
else:
|
47 |
+
ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
|
48 |
+
last_value = data[i]
|
49 |
+
|
50 |
+
return ip_data[:, 0], vuv_vector[:, 0]
|
51 |
+
|
52 |
+
def compute_f0(self, wav, p_len=None):
|
53 |
+
x = wav
|
54 |
+
if p_len is None:
|
55 |
+
p_len = x.shape[0] // self.hop_length
|
56 |
+
else:
|
57 |
+
assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
|
58 |
+
time_step = self.hop_length / self.sampling_rate * 1000
|
59 |
+
f0 = (
|
60 |
+
parselmouth.Sound(x, self.sampling_rate)
|
61 |
+
.to_pitch_ac(
|
62 |
+
time_step=time_step / 1000,
|
63 |
+
voicing_threshold=0.6,
|
64 |
+
pitch_floor=self.f0_min,
|
65 |
+
pitch_ceiling=self.f0_max,
|
66 |
+
)
|
67 |
+
.selected_array["frequency"]
|
68 |
+
)
|
69 |
+
|
70 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
71 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
72 |
+
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
73 |
+
f0, uv = self.interpolate_f0(f0)
|
74 |
+
return f0
|
75 |
+
|
76 |
+
def compute_f0_uv(self, wav, p_len=None):
|
77 |
+
x = wav
|
78 |
+
if p_len is None:
|
79 |
+
p_len = x.shape[0] // self.hop_length
|
80 |
+
else:
|
81 |
+
assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
|
82 |
+
time_step = self.hop_length / self.sampling_rate * 1000
|
83 |
+
f0 = (
|
84 |
+
parselmouth.Sound(x, self.sampling_rate)
|
85 |
+
.to_pitch_ac(
|
86 |
+
time_step=time_step / 1000,
|
87 |
+
voicing_threshold=0.6,
|
88 |
+
pitch_floor=self.f0_min,
|
89 |
+
pitch_ceiling=self.f0_max,
|
90 |
+
)
|
91 |
+
.selected_array["frequency"]
|
92 |
+
)
|
93 |
+
|
94 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
95 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
96 |
+
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
97 |
+
f0, uv = self.interpolate_f0(f0)
|
98 |
+
return f0, uv
|
infer/lib/infer_pack/modules/F0Predictor/__init__.py
ADDED
File without changes
|
infer/lib/infer_pack/onnx_inference.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import librosa
|
2 |
+
import numpy as np
|
3 |
+
import onnxruntime
|
4 |
+
import soundfile
|
5 |
+
|
6 |
+
import logging
|
7 |
+
|
8 |
+
logger = logging.getLogger(__name__)
|
9 |
+
|
10 |
+
|
11 |
+
class ContentVec:
|
12 |
+
def __init__(self, vec_path="pretrained/vec-768-layer-12.onnx", device=None):
|
13 |
+
logger.info("Load model(s) from {}".format(vec_path))
|
14 |
+
if device == "cpu" or device is None:
|
15 |
+
providers = ["CPUExecutionProvider"]
|
16 |
+
elif device == "cuda":
|
17 |
+
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
18 |
+
elif device == "dml":
|
19 |
+
providers = ["DmlExecutionProvider"]
|
20 |
+
else:
|
21 |
+
raise RuntimeError("Unsportted Device")
|
22 |
+
self.model = onnxruntime.InferenceSession(vec_path, providers=providers)
|
23 |
+
|
24 |
+
def __call__(self, wav):
|
25 |
+
return self.forward(wav)
|
26 |
+
|
27 |
+
def forward(self, wav):
|
28 |
+
feats = wav
|
29 |
+
if feats.ndim == 2: # double channels
|
30 |
+
feats = feats.mean(-1)
|
31 |
+
assert feats.ndim == 1, feats.ndim
|
32 |
+
feats = np.expand_dims(np.expand_dims(feats, 0), 0)
|
33 |
+
onnx_input = {self.model.get_inputs()[0].name: feats}
|
34 |
+
logits = self.model.run(None, onnx_input)[0]
|
35 |
+
return logits.transpose(0, 2, 1)
|
36 |
+
|
37 |
+
|
38 |
+
def get_f0_predictor(f0_predictor, hop_length, sampling_rate, **kargs):
|
39 |
+
if f0_predictor == "pm":
|
40 |
+
from lib.infer_pack.modules.F0Predictor.PMF0Predictor import PMF0Predictor
|
41 |
+
|
42 |
+
f0_predictor_object = PMF0Predictor(
|
43 |
+
hop_length=hop_length, sampling_rate=sampling_rate
|
44 |
+
)
|
45 |
+
elif f0_predictor == "harvest":
|
46 |
+
from lib.infer_pack.modules.F0Predictor.HarvestF0Predictor import (
|
47 |
+
HarvestF0Predictor,
|
48 |
+
)
|
49 |
+
|
50 |
+
f0_predictor_object = HarvestF0Predictor(
|
51 |
+
hop_length=hop_length, sampling_rate=sampling_rate
|
52 |
+
)
|
53 |
+
elif f0_predictor == "dio":
|
54 |
+
from lib.infer_pack.modules.F0Predictor.DioF0Predictor import DioF0Predictor
|
55 |
+
|
56 |
+
f0_predictor_object = DioF0Predictor(
|
57 |
+
hop_length=hop_length, sampling_rate=sampling_rate
|
58 |
+
)
|
59 |
+
else:
|
60 |
+
raise Exception("Unknown f0 predictor")
|
61 |
+
return f0_predictor_object
|
62 |
+
|
63 |
+
|
64 |
+
class OnnxRVC:
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
model_path,
|
68 |
+
sr=40000,
|
69 |
+
hop_size=512,
|
70 |
+
vec_path="vec-768-layer-12",
|
71 |
+
device="cpu",
|
72 |
+
):
|
73 |
+
vec_path = f"pretrained/{vec_path}.onnx"
|
74 |
+
self.vec_model = ContentVec(vec_path, device)
|
75 |
+
if device == "cpu" or device is None:
|
76 |
+
providers = ["CPUExecutionProvider"]
|
77 |
+
elif device == "cuda":
|
78 |
+
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
79 |
+
elif device == "dml":
|
80 |
+
providers = ["DmlExecutionProvider"]
|
81 |
+
else:
|
82 |
+
raise RuntimeError("Unsportted Device")
|
83 |
+
self.model = onnxruntime.InferenceSession(model_path, providers=providers)
|
84 |
+
self.sampling_rate = sr
|
85 |
+
self.hop_size = hop_size
|
86 |
+
|
87 |
+
def forward(self, hubert, hubert_length, pitch, pitchf, ds, rnd):
|
88 |
+
onnx_input = {
|
89 |
+
self.model.get_inputs()[0].name: hubert,
|
90 |
+
self.model.get_inputs()[1].name: hubert_length,
|
91 |
+
self.model.get_inputs()[2].name: pitch,
|
92 |
+
self.model.get_inputs()[3].name: pitchf,
|
93 |
+
self.model.get_inputs()[4].name: ds,
|
94 |
+
self.model.get_inputs()[5].name: rnd,
|
95 |
+
}
|
96 |
+
return (self.model.run(None, onnx_input)[0] * 32767).astype(np.int16)
|
97 |
+
|
98 |
+
def inference(
|
99 |
+
self,
|
100 |
+
raw_path,
|
101 |
+
sid,
|
102 |
+
f0_method="dio",
|
103 |
+
f0_up_key=0,
|
104 |
+
pad_time=0.5,
|
105 |
+
cr_threshold=0.02,
|
106 |
+
):
|
107 |
+
f0_min = 50
|
108 |
+
f0_max = 1100
|
109 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
110 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
111 |
+
f0_predictor = get_f0_predictor(
|
112 |
+
f0_method,
|
113 |
+
hop_length=self.hop_size,
|
114 |
+
sampling_rate=self.sampling_rate,
|
115 |
+
threshold=cr_threshold,
|
116 |
+
)
|
117 |
+
wav, sr = librosa.load(raw_path, sr=self.sampling_rate)
|
118 |
+
org_length = len(wav)
|
119 |
+
if org_length / sr > 50.0:
|
120 |
+
raise RuntimeError("Reached Max Length")
|
121 |
+
|
122 |
+
wav16k = librosa.resample(wav, orig_sr=self.sampling_rate, target_sr=16000)
|
123 |
+
wav16k = wav16k
|
124 |
+
|
125 |
+
hubert = self.vec_model(wav16k)
|
126 |
+
hubert = np.repeat(hubert, 2, axis=2).transpose(0, 2, 1).astype(np.float32)
|
127 |
+
hubert_length = hubert.shape[1]
|
128 |
+
|
129 |
+
pitchf = f0_predictor.compute_f0(wav, hubert_length)
|
130 |
+
pitchf = pitchf * 2 ** (f0_up_key / 12)
|
131 |
+
pitch = pitchf.copy()
|
132 |
+
f0_mel = 1127 * np.log(1 + pitch / 700)
|
133 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
134 |
+
f0_mel_max - f0_mel_min
|
135 |
+
) + 1
|
136 |
+
f0_mel[f0_mel <= 1] = 1
|
137 |
+
f0_mel[f0_mel > 255] = 255
|
138 |
+
pitch = np.rint(f0_mel).astype(np.int64)
|
139 |
+
|
140 |
+
pitchf = pitchf.reshape(1, len(pitchf)).astype(np.float32)
|
141 |
+
pitch = pitch.reshape(1, len(pitch))
|
142 |
+
ds = np.array([sid]).astype(np.int64)
|
143 |
+
|
144 |
+
rnd = np.random.randn(1, 192, hubert_length).astype(np.float32)
|
145 |
+
hubert_length = np.array([hubert_length]).astype(np.int64)
|
146 |
+
|
147 |
+
out_wav = self.forward(hubert, hubert_length, pitch, pitchf, ds, rnd).squeeze()
|
148 |
+
out_wav = np.pad(out_wav, (0, 2 * self.hop_size), "constant")
|
149 |
+
return out_wav[0:org_length]
|
infer/lib/infer_pack/transforms.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
6 |
+
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
7 |
+
DEFAULT_MIN_DERIVATIVE = 1e-3
|
8 |
+
|
9 |
+
|
10 |
+
def piecewise_rational_quadratic_transform(
|
11 |
+
inputs,
|
12 |
+
unnormalized_widths,
|
13 |
+
unnormalized_heights,
|
14 |
+
unnormalized_derivatives,
|
15 |
+
inverse=False,
|
16 |
+
tails=None,
|
17 |
+
tail_bound=1.0,
|
18 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
19 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
20 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
21 |
+
):
|
22 |
+
if tails is None:
|
23 |
+
spline_fn = rational_quadratic_spline
|
24 |
+
spline_kwargs = {}
|
25 |
+
else:
|
26 |
+
spline_fn = unconstrained_rational_quadratic_spline
|
27 |
+
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
|
28 |
+
|
29 |
+
outputs, logabsdet = spline_fn(
|
30 |
+
inputs=inputs,
|
31 |
+
unnormalized_widths=unnormalized_widths,
|
32 |
+
unnormalized_heights=unnormalized_heights,
|
33 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
34 |
+
inverse=inverse,
|
35 |
+
min_bin_width=min_bin_width,
|
36 |
+
min_bin_height=min_bin_height,
|
37 |
+
min_derivative=min_derivative,
|
38 |
+
**spline_kwargs
|
39 |
+
)
|
40 |
+
return outputs, logabsdet
|
41 |
+
|
42 |
+
|
43 |
+
def searchsorted(bin_locations, inputs, eps=1e-6):
|
44 |
+
bin_locations[..., -1] += eps
|
45 |
+
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
46 |
+
|
47 |
+
|
48 |
+
def unconstrained_rational_quadratic_spline(
|
49 |
+
inputs,
|
50 |
+
unnormalized_widths,
|
51 |
+
unnormalized_heights,
|
52 |
+
unnormalized_derivatives,
|
53 |
+
inverse=False,
|
54 |
+
tails="linear",
|
55 |
+
tail_bound=1.0,
|
56 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
57 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
58 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
59 |
+
):
|
60 |
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
61 |
+
outside_interval_mask = ~inside_interval_mask
|
62 |
+
|
63 |
+
outputs = torch.zeros_like(inputs)
|
64 |
+
logabsdet = torch.zeros_like(inputs)
|
65 |
+
|
66 |
+
if tails == "linear":
|
67 |
+
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
68 |
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
69 |
+
unnormalized_derivatives[..., 0] = constant
|
70 |
+
unnormalized_derivatives[..., -1] = constant
|
71 |
+
|
72 |
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
73 |
+
logabsdet[outside_interval_mask] = 0
|
74 |
+
else:
|
75 |
+
raise RuntimeError("{} tails are not implemented.".format(tails))
|
76 |
+
|
77 |
+
(
|
78 |
+
outputs[inside_interval_mask],
|
79 |
+
logabsdet[inside_interval_mask],
|
80 |
+
) = rational_quadratic_spline(
|
81 |
+
inputs=inputs[inside_interval_mask],
|
82 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
83 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
84 |
+
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
85 |
+
inverse=inverse,
|
86 |
+
left=-tail_bound,
|
87 |
+
right=tail_bound,
|
88 |
+
bottom=-tail_bound,
|
89 |
+
top=tail_bound,
|
90 |
+
min_bin_width=min_bin_width,
|
91 |
+
min_bin_height=min_bin_height,
|
92 |
+
min_derivative=min_derivative,
|
93 |
+
)
|
94 |
+
|
95 |
+
return outputs, logabsdet
|
96 |
+
|
97 |
+
|
98 |
+
def rational_quadratic_spline(
|
99 |
+
inputs,
|
100 |
+
unnormalized_widths,
|
101 |
+
unnormalized_heights,
|
102 |
+
unnormalized_derivatives,
|
103 |
+
inverse=False,
|
104 |
+
left=0.0,
|
105 |
+
right=1.0,
|
106 |
+
bottom=0.0,
|
107 |
+
top=1.0,
|
108 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
109 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
110 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
111 |
+
):
|
112 |
+
if torch.min(inputs) < left or torch.max(inputs) > right:
|
113 |
+
raise ValueError("Input to a transform is not within its domain")
|
114 |
+
|
115 |
+
num_bins = unnormalized_widths.shape[-1]
|
116 |
+
|
117 |
+
if min_bin_width * num_bins > 1.0:
|
118 |
+
raise ValueError("Minimal bin width too large for the number of bins")
|
119 |
+
if min_bin_height * num_bins > 1.0:
|
120 |
+
raise ValueError("Minimal bin height too large for the number of bins")
|
121 |
+
|
122 |
+
widths = F.softmax(unnormalized_widths, dim=-1)
|
123 |
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
124 |
+
cumwidths = torch.cumsum(widths, dim=-1)
|
125 |
+
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
|
126 |
+
cumwidths = (right - left) * cumwidths + left
|
127 |
+
cumwidths[..., 0] = left
|
128 |
+
cumwidths[..., -1] = right
|
129 |
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
130 |
+
|
131 |
+
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
132 |
+
|
133 |
+
heights = F.softmax(unnormalized_heights, dim=-1)
|
134 |
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
135 |
+
cumheights = torch.cumsum(heights, dim=-1)
|
136 |
+
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
|
137 |
+
cumheights = (top - bottom) * cumheights + bottom
|
138 |
+
cumheights[..., 0] = bottom
|
139 |
+
cumheights[..., -1] = top
|
140 |
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
141 |
+
|
142 |
+
if inverse:
|
143 |
+
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
144 |
+
else:
|
145 |
+
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
146 |
+
|
147 |
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
148 |
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
149 |
+
|
150 |
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
151 |
+
delta = heights / widths
|
152 |
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
153 |
+
|
154 |
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
155 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
156 |
+
|
157 |
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
158 |
+
|
159 |
+
if inverse:
|
160 |
+
a = (inputs - input_cumheights) * (
|
161 |
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
162 |
+
) + input_heights * (input_delta - input_derivatives)
|
163 |
+
b = input_heights * input_derivatives - (inputs - input_cumheights) * (
|
164 |
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
165 |
+
)
|
166 |
+
c = -input_delta * (inputs - input_cumheights)
|
167 |
+
|
168 |
+
discriminant = b.pow(2) - 4 * a * c
|
169 |
+
assert (discriminant >= 0).all()
|
170 |
+
|
171 |
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
172 |
+
outputs = root * input_bin_widths + input_cumwidths
|
173 |
+
|
174 |
+
theta_one_minus_theta = root * (1 - root)
|
175 |
+
denominator = input_delta + (
|
176 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
177 |
+
* theta_one_minus_theta
|
178 |
+
)
|
179 |
+
derivative_numerator = input_delta.pow(2) * (
|
180 |
+
input_derivatives_plus_one * root.pow(2)
|
181 |
+
+ 2 * input_delta * theta_one_minus_theta
|
182 |
+
+ input_derivatives * (1 - root).pow(2)
|
183 |
+
)
|
184 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
185 |
+
|
186 |
+
return outputs, -logabsdet
|
187 |
+
else:
|
188 |
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
189 |
+
theta_one_minus_theta = theta * (1 - theta)
|
190 |
+
|
191 |
+
numerator = input_heights * (
|
192 |
+
input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
|
193 |
+
)
|
194 |
+
denominator = input_delta + (
|
195 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
196 |
+
* theta_one_minus_theta
|
197 |
+
)
|
198 |
+
outputs = input_cumheights + numerator / denominator
|
199 |
+
|
200 |
+
derivative_numerator = input_delta.pow(2) * (
|
201 |
+
input_derivatives_plus_one * theta.pow(2)
|
202 |
+
+ 2 * input_delta * theta_one_minus_theta
|
203 |
+
+ input_derivatives * (1 - theta).pow(2)
|
204 |
+
)
|
205 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
206 |
+
|
207 |
+
return outputs, logabsdet
|
infer/lib/jit/__init__.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
import pickle
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
from tqdm import tqdm
|
6 |
+
from collections import OrderedDict
|
7 |
+
|
8 |
+
|
9 |
+
def load_inputs(path, device, is_half=False):
|
10 |
+
parm = torch.load(path, map_location=torch.device("cpu"))
|
11 |
+
for key in parm.keys():
|
12 |
+
parm[key] = parm[key].to(device)
|
13 |
+
if is_half and parm[key].dtype == torch.float32:
|
14 |
+
parm[key] = parm[key].half()
|
15 |
+
elif not is_half and parm[key].dtype == torch.float16:
|
16 |
+
parm[key] = parm[key].float()
|
17 |
+
return parm
|
18 |
+
|
19 |
+
|
20 |
+
def benchmark(
|
21 |
+
model, inputs_path, device=torch.device("cpu"), epoch=1000, is_half=False
|
22 |
+
):
|
23 |
+
parm = load_inputs(inputs_path, device, is_half)
|
24 |
+
total_ts = 0.0
|
25 |
+
bar = tqdm(range(epoch))
|
26 |
+
for i in bar:
|
27 |
+
start_time = time.perf_counter()
|
28 |
+
o = model(**parm)
|
29 |
+
total_ts += time.perf_counter() - start_time
|
30 |
+
print(f"num_epoch: {epoch} | avg time(ms): {(total_ts*1000)/epoch}")
|
31 |
+
|
32 |
+
|
33 |
+
def jit_warm_up(model, inputs_path, device=torch.device("cpu"), epoch=5, is_half=False):
|
34 |
+
benchmark(model, inputs_path, device, epoch=epoch, is_half=is_half)
|
35 |
+
|
36 |
+
|
37 |
+
def to_jit_model(
|
38 |
+
model_path,
|
39 |
+
model_type: str,
|
40 |
+
mode: str = "trace",
|
41 |
+
inputs_path: str = None,
|
42 |
+
device=torch.device("cpu"),
|
43 |
+
is_half=False,
|
44 |
+
):
|
45 |
+
model = None
|
46 |
+
if model_type.lower() == "synthesizer":
|
47 |
+
from .get_synthesizer import get_synthesizer
|
48 |
+
|
49 |
+
model, _ = get_synthesizer(model_path, device)
|
50 |
+
model.forward = model.infer
|
51 |
+
elif model_type.lower() == "rmvpe":
|
52 |
+
from .get_rmvpe import get_rmvpe
|
53 |
+
|
54 |
+
model = get_rmvpe(model_path, device)
|
55 |
+
elif model_type.lower() == "hubert":
|
56 |
+
from .get_hubert import get_hubert_model
|
57 |
+
|
58 |
+
model = get_hubert_model(model_path, device)
|
59 |
+
model.forward = model.infer
|
60 |
+
else:
|
61 |
+
raise ValueError(f"No model type named {model_type}")
|
62 |
+
model = model.eval()
|
63 |
+
model = model.half() if is_half else model.float()
|
64 |
+
if mode == "trace":
|
65 |
+
assert not inputs_path
|
66 |
+
inputs = load_inputs(inputs_path, device, is_half)
|
67 |
+
model_jit = torch.jit.trace(model, example_kwarg_inputs=inputs)
|
68 |
+
elif mode == "script":
|
69 |
+
model_jit = torch.jit.script(model)
|
70 |
+
model_jit.to(device)
|
71 |
+
model_jit = model_jit.half() if is_half else model_jit.float()
|
72 |
+
# model = model.half() if is_half else model.float()
|
73 |
+
return (model, model_jit)
|
74 |
+
|
75 |
+
|
76 |
+
def export(
|
77 |
+
model: torch.nn.Module,
|
78 |
+
mode: str = "trace",
|
79 |
+
inputs: dict = None,
|
80 |
+
device=torch.device("cpu"),
|
81 |
+
is_half: bool = False,
|
82 |
+
) -> dict:
|
83 |
+
model = model.half() if is_half else model.float()
|
84 |
+
model.eval()
|
85 |
+
if mode == "trace":
|
86 |
+
assert inputs is not None
|
87 |
+
model_jit = torch.jit.trace(model, example_kwarg_inputs=inputs)
|
88 |
+
elif mode == "script":
|
89 |
+
model_jit = torch.jit.script(model)
|
90 |
+
model_jit.to(device)
|
91 |
+
model_jit = model_jit.half() if is_half else model_jit.float()
|
92 |
+
buffer = BytesIO()
|
93 |
+
# model_jit=model_jit.cpu()
|
94 |
+
torch.jit.save(model_jit, buffer)
|
95 |
+
del model_jit
|
96 |
+
cpt = OrderedDict()
|
97 |
+
cpt["model"] = buffer.getvalue()
|
98 |
+
cpt["is_half"] = is_half
|
99 |
+
return cpt
|
100 |
+
|
101 |
+
|
102 |
+
def load(path: str):
|
103 |
+
with open(path, "rb") as f:
|
104 |
+
return pickle.load(f)
|
105 |
+
|
106 |
+
|
107 |
+
def save(ckpt: dict, save_path: str):
|
108 |
+
with open(save_path, "wb") as f:
|
109 |
+
pickle.dump(ckpt, f)
|
110 |
+
|
111 |
+
|
112 |
+
def rmvpe_jit_export(
|
113 |
+
model_path: str,
|
114 |
+
mode: str = "script",
|
115 |
+
inputs_path: str = None,
|
116 |
+
save_path: str = None,
|
117 |
+
device=torch.device("cpu"),
|
118 |
+
is_half=False,
|
119 |
+
):
|
120 |
+
if not save_path:
|
121 |
+
save_path = model_path.rstrip(".pth")
|
122 |
+
save_path += ".half.jit" if is_half else ".jit"
|
123 |
+
if "cuda" in str(device) and ":" not in str(device):
|
124 |
+
device = torch.device("cuda:0")
|
125 |
+
from .get_rmvpe import get_rmvpe
|
126 |
+
|
127 |
+
model = get_rmvpe(model_path, device)
|
128 |
+
inputs = None
|
129 |
+
if mode == "trace":
|
130 |
+
inputs = load_inputs(inputs_path, device, is_half)
|
131 |
+
ckpt = export(model, mode, inputs, device, is_half)
|
132 |
+
ckpt["device"] = str(device)
|
133 |
+
save(ckpt, save_path)
|
134 |
+
return ckpt
|
135 |
+
|
136 |
+
|
137 |
+
def synthesizer_jit_export(
|
138 |
+
model_path: str,
|
139 |
+
mode: str = "script",
|
140 |
+
inputs_path: str = None,
|
141 |
+
save_path: str = None,
|
142 |
+
device=torch.device("cpu"),
|
143 |
+
is_half=False,
|
144 |
+
):
|
145 |
+
if not save_path:
|
146 |
+
save_path = model_path.rstrip(".pth")
|
147 |
+
save_path += ".half.jit" if is_half else ".jit"
|
148 |
+
if "cuda" in str(device) and ":" not in str(device):
|
149 |
+
device = torch.device("cuda:0")
|
150 |
+
from .get_synthesizer import get_synthesizer
|
151 |
+
|
152 |
+
model, cpt = get_synthesizer(model_path, device)
|
153 |
+
assert isinstance(cpt, dict)
|
154 |
+
model.forward = model.infer
|
155 |
+
inputs = None
|
156 |
+
if mode == "trace":
|
157 |
+
inputs = load_inputs(inputs_path, device, is_half)
|
158 |
+
ckpt = export(model, mode, inputs, device, is_half)
|
159 |
+
cpt.pop("weight")
|
160 |
+
cpt["model"] = ckpt["model"]
|
161 |
+
cpt["device"] = device
|
162 |
+
save(cpt, save_path)
|
163 |
+
return cpt
|
infer/lib/jit/get_hubert.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import random
|
3 |
+
from typing import Optional, Tuple
|
4 |
+
from fairseq.checkpoint_utils import load_model_ensemble_and_task
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
# from fairseq.data.data_utils import compute_mask_indices
|
10 |
+
from fairseq.utils import index_put
|
11 |
+
|
12 |
+
|
13 |
+
# @torch.jit.script
|
14 |
+
def pad_to_multiple(x, multiple, dim=-1, value=0):
|
15 |
+
# Inspired from https://github.com/lucidrains/local-attention/blob/master/local_attention/local_attention.py#L41
|
16 |
+
if x is None:
|
17 |
+
return None, 0
|
18 |
+
tsz = x.size(dim)
|
19 |
+
m = tsz / multiple
|
20 |
+
remainder = math.ceil(m) * multiple - tsz
|
21 |
+
if int(tsz % multiple) == 0:
|
22 |
+
return x, 0
|
23 |
+
pad_offset = (0,) * (-1 - dim) * 2
|
24 |
+
|
25 |
+
return F.pad(x, (*pad_offset, 0, remainder), value=value), remainder
|
26 |
+
|
27 |
+
|
28 |
+
def extract_features(
|
29 |
+
self,
|
30 |
+
x,
|
31 |
+
padding_mask=None,
|
32 |
+
tgt_layer=None,
|
33 |
+
min_layer=0,
|
34 |
+
):
|
35 |
+
if padding_mask is not None:
|
36 |
+
x = index_put(x, padding_mask, 0)
|
37 |
+
|
38 |
+
x_conv = self.pos_conv(x.transpose(1, 2))
|
39 |
+
x_conv = x_conv.transpose(1, 2)
|
40 |
+
x = x + x_conv
|
41 |
+
|
42 |
+
if not self.layer_norm_first:
|
43 |
+
x = self.layer_norm(x)
|
44 |
+
|
45 |
+
# pad to the sequence length dimension
|
46 |
+
x, pad_length = pad_to_multiple(x, self.required_seq_len_multiple, dim=-2, value=0)
|
47 |
+
if pad_length > 0 and padding_mask is None:
|
48 |
+
padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool)
|
49 |
+
padding_mask[:, -pad_length:] = True
|
50 |
+
else:
|
51 |
+
padding_mask, _ = pad_to_multiple(
|
52 |
+
padding_mask, self.required_seq_len_multiple, dim=-1, value=True
|
53 |
+
)
|
54 |
+
x = F.dropout(x, p=self.dropout, training=self.training)
|
55 |
+
|
56 |
+
# B x T x C -> T x B x C
|
57 |
+
x = x.transpose(0, 1)
|
58 |
+
|
59 |
+
layer_results = []
|
60 |
+
r = None
|
61 |
+
for i, layer in enumerate(self.layers):
|
62 |
+
dropout_probability = np.random.random() if self.layerdrop > 0 else 1
|
63 |
+
if not self.training or (dropout_probability > self.layerdrop):
|
64 |
+
x, (z, lr) = layer(
|
65 |
+
x, self_attn_padding_mask=padding_mask, need_weights=False
|
66 |
+
)
|
67 |
+
if i >= min_layer:
|
68 |
+
layer_results.append((x, z, lr))
|
69 |
+
if i == tgt_layer:
|
70 |
+
r = x
|
71 |
+
break
|
72 |
+
|
73 |
+
if r is not None:
|
74 |
+
x = r
|
75 |
+
|
76 |
+
# T x B x C -> B x T x C
|
77 |
+
x = x.transpose(0, 1)
|
78 |
+
|
79 |
+
# undo paddding
|
80 |
+
if pad_length > 0:
|
81 |
+
x = x[:, :-pad_length]
|
82 |
+
|
83 |
+
def undo_pad(a, b, c):
|
84 |
+
return (
|
85 |
+
a[:-pad_length],
|
86 |
+
b[:-pad_length] if b is not None else b,
|
87 |
+
c[:-pad_length],
|
88 |
+
)
|
89 |
+
|
90 |
+
layer_results = [undo_pad(*u) for u in layer_results]
|
91 |
+
|
92 |
+
return x, layer_results
|
93 |
+
|
94 |
+
|
95 |
+
def compute_mask_indices(
|
96 |
+
shape: Tuple[int, int],
|
97 |
+
padding_mask: Optional[torch.Tensor],
|
98 |
+
mask_prob: float,
|
99 |
+
mask_length: int,
|
100 |
+
mask_type: str = "static",
|
101 |
+
mask_other: float = 0.0,
|
102 |
+
min_masks: int = 0,
|
103 |
+
no_overlap: bool = False,
|
104 |
+
min_space: int = 0,
|
105 |
+
require_same_masks: bool = True,
|
106 |
+
mask_dropout: float = 0.0,
|
107 |
+
) -> torch.Tensor:
|
108 |
+
"""
|
109 |
+
Computes random mask spans for a given shape
|
110 |
+
|
111 |
+
Args:
|
112 |
+
shape: the the shape for which to compute masks.
|
113 |
+
should be of size 2 where first element is batch size and 2nd is timesteps
|
114 |
+
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
|
115 |
+
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
|
116 |
+
number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
|
117 |
+
however due to overlaps, the actual number will be smaller (unless no_overlap is True)
|
118 |
+
mask_type: how to compute mask lengths
|
119 |
+
static = fixed size
|
120 |
+
uniform = sample from uniform distribution [mask_other, mask_length*2]
|
121 |
+
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element
|
122 |
+
poisson = sample from possion distribution with lambda = mask length
|
123 |
+
min_masks: minimum number of masked spans
|
124 |
+
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping
|
125 |
+
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans
|
126 |
+
require_same_masks: if true, will randomly drop out masks until same amount of masks remains in each sample
|
127 |
+
mask_dropout: randomly dropout this percentage of masks in each example
|
128 |
+
"""
|
129 |
+
|
130 |
+
bsz, all_sz = shape
|
131 |
+
mask = torch.full((bsz, all_sz), False)
|
132 |
+
|
133 |
+
all_num_mask = int(
|
134 |
+
# add a random number for probabilistic rounding
|
135 |
+
mask_prob * all_sz / float(mask_length)
|
136 |
+
+ torch.rand([1]).item()
|
137 |
+
)
|
138 |
+
|
139 |
+
all_num_mask = max(min_masks, all_num_mask)
|
140 |
+
|
141 |
+
mask_idcs = []
|
142 |
+
for i in range(bsz):
|
143 |
+
if padding_mask is not None:
|
144 |
+
sz = all_sz - padding_mask[i].long().sum().item()
|
145 |
+
num_mask = int(mask_prob * sz / float(mask_length) + np.random.rand())
|
146 |
+
num_mask = max(min_masks, num_mask)
|
147 |
+
else:
|
148 |
+
sz = all_sz
|
149 |
+
num_mask = all_num_mask
|
150 |
+
|
151 |
+
if mask_type == "static":
|
152 |
+
lengths = torch.full([num_mask], mask_length)
|
153 |
+
elif mask_type == "uniform":
|
154 |
+
lengths = torch.randint(mask_other, mask_length * 2 + 1, size=[num_mask])
|
155 |
+
elif mask_type == "normal":
|
156 |
+
lengths = torch.normal(mask_length, mask_other, size=[num_mask])
|
157 |
+
lengths = [max(1, int(round(x))) for x in lengths]
|
158 |
+
else:
|
159 |
+
raise Exception("unknown mask selection " + mask_type)
|
160 |
+
|
161 |
+
if sum(lengths) == 0:
|
162 |
+
lengths[0] = min(mask_length, sz - 1)
|
163 |
+
|
164 |
+
if no_overlap:
|
165 |
+
mask_idc = []
|
166 |
+
|
167 |
+
def arrange(s, e, length, keep_length):
|
168 |
+
span_start = torch.randint(low=s, high=e - length, size=[1]).item()
|
169 |
+
mask_idc.extend(span_start + i for i in range(length))
|
170 |
+
|
171 |
+
new_parts = []
|
172 |
+
if span_start - s - min_space >= keep_length:
|
173 |
+
new_parts.append((s, span_start - min_space + 1))
|
174 |
+
if e - span_start - length - min_space > keep_length:
|
175 |
+
new_parts.append((span_start + length + min_space, e))
|
176 |
+
return new_parts
|
177 |
+
|
178 |
+
parts = [(0, sz)]
|
179 |
+
min_length = min(lengths)
|
180 |
+
for length in sorted(lengths, reverse=True):
|
181 |
+
t = [e - s if e - s >= length + min_space else 0 for s, e in parts]
|
182 |
+
lens = torch.asarray(t, dtype=torch.int)
|
183 |
+
l_sum = torch.sum(lens)
|
184 |
+
if l_sum == 0:
|
185 |
+
break
|
186 |
+
probs = lens / torch.sum(lens)
|
187 |
+
c = torch.multinomial(probs.float(), len(parts)).item()
|
188 |
+
s, e = parts.pop(c)
|
189 |
+
parts.extend(arrange(s, e, length, min_length))
|
190 |
+
mask_idc = torch.asarray(mask_idc)
|
191 |
+
else:
|
192 |
+
min_len = min(lengths)
|
193 |
+
if sz - min_len <= num_mask:
|
194 |
+
min_len = sz - num_mask - 1
|
195 |
+
mask_idc = torch.asarray(
|
196 |
+
random.sample([i for i in range(sz - min_len)], num_mask)
|
197 |
+
)
|
198 |
+
mask_idc = torch.asarray(
|
199 |
+
[
|
200 |
+
mask_idc[j] + offset
|
201 |
+
for j in range(len(mask_idc))
|
202 |
+
for offset in range(lengths[j])
|
203 |
+
]
|
204 |
+
)
|
205 |
+
|
206 |
+
mask_idcs.append(torch.unique(mask_idc[mask_idc < sz]))
|
207 |
+
|
208 |
+
min_len = min([len(m) for m in mask_idcs])
|
209 |
+
for i, mask_idc in enumerate(mask_idcs):
|
210 |
+
if isinstance(mask_idc, torch.Tensor):
|
211 |
+
mask_idc = torch.asarray(mask_idc, dtype=torch.float)
|
212 |
+
if len(mask_idc) > min_len and require_same_masks:
|
213 |
+
mask_idc = torch.asarray(
|
214 |
+
random.sample([i for i in range(mask_idc)], min_len)
|
215 |
+
)
|
216 |
+
if mask_dropout > 0:
|
217 |
+
num_holes = int(round(len(mask_idc) * mask_dropout))
|
218 |
+
mask_idc = torch.asarray(
|
219 |
+
random.sample([i for i in range(mask_idc)], len(mask_idc) - num_holes)
|
220 |
+
)
|
221 |
+
|
222 |
+
mask[i, mask_idc.int()] = True
|
223 |
+
|
224 |
+
return mask
|
225 |
+
|
226 |
+
|
227 |
+
def apply_mask(self, x, padding_mask, target_list):
|
228 |
+
B, T, C = x.shape
|
229 |
+
torch.zeros_like(x)
|
230 |
+
if self.mask_prob > 0:
|
231 |
+
mask_indices = compute_mask_indices(
|
232 |
+
(B, T),
|
233 |
+
padding_mask,
|
234 |
+
self.mask_prob,
|
235 |
+
self.mask_length,
|
236 |
+
self.mask_selection,
|
237 |
+
self.mask_other,
|
238 |
+
min_masks=2,
|
239 |
+
no_overlap=self.no_mask_overlap,
|
240 |
+
min_space=self.mask_min_space,
|
241 |
+
)
|
242 |
+
mask_indices = mask_indices.to(x.device)
|
243 |
+
x[mask_indices] = self.mask_emb
|
244 |
+
else:
|
245 |
+
mask_indices = None
|
246 |
+
|
247 |
+
if self.mask_channel_prob > 0:
|
248 |
+
mask_channel_indices = compute_mask_indices(
|
249 |
+
(B, C),
|
250 |
+
None,
|
251 |
+
self.mask_channel_prob,
|
252 |
+
self.mask_channel_length,
|
253 |
+
self.mask_channel_selection,
|
254 |
+
self.mask_channel_other,
|
255 |
+
no_overlap=self.no_mask_channel_overlap,
|
256 |
+
min_space=self.mask_channel_min_space,
|
257 |
+
)
|
258 |
+
mask_channel_indices = (
|
259 |
+
mask_channel_indices.to(x.device).unsqueeze(1).expand(-1, T, -1)
|
260 |
+
)
|
261 |
+
x[mask_channel_indices] = 0
|
262 |
+
|
263 |
+
return x, mask_indices
|
264 |
+
|
265 |
+
|
266 |
+
def get_hubert_model(
|
267 |
+
model_path="assets/hubert/hubert_base.pt", device=torch.device("cpu")
|
268 |
+
):
|
269 |
+
models, _, _ = load_model_ensemble_and_task(
|
270 |
+
[model_path],
|
271 |
+
suffix="",
|
272 |
+
)
|
273 |
+
hubert_model = models[0]
|
274 |
+
hubert_model = hubert_model.to(device)
|
275 |
+
|
276 |
+
def _apply_mask(x, padding_mask, target_list):
|
277 |
+
return apply_mask(hubert_model, x, padding_mask, target_list)
|
278 |
+
|
279 |
+
hubert_model.apply_mask = _apply_mask
|
280 |
+
|
281 |
+
def _extract_features(
|
282 |
+
x,
|
283 |
+
padding_mask=None,
|
284 |
+
tgt_layer=None,
|
285 |
+
min_layer=0,
|
286 |
+
):
|
287 |
+
return extract_features(
|
288 |
+
hubert_model.encoder,
|
289 |
+
x,
|
290 |
+
padding_mask=padding_mask,
|
291 |
+
tgt_layer=tgt_layer,
|
292 |
+
min_layer=min_layer,
|
293 |
+
)
|
294 |
+
|
295 |
+
hubert_model.encoder.extract_features = _extract_features
|
296 |
+
|
297 |
+
hubert_model._forward = hubert_model.forward
|
298 |
+
|
299 |
+
def hubert_extract_features(
|
300 |
+
self,
|
301 |
+
source: torch.Tensor,
|
302 |
+
padding_mask: Optional[torch.Tensor] = None,
|
303 |
+
mask: bool = False,
|
304 |
+
ret_conv: bool = False,
|
305 |
+
output_layer: Optional[int] = None,
|
306 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
307 |
+
res = self._forward(
|
308 |
+
source,
|
309 |
+
padding_mask=padding_mask,
|
310 |
+
mask=mask,
|
311 |
+
features_only=True,
|
312 |
+
output_layer=output_layer,
|
313 |
+
)
|
314 |
+
feature = res["features"] if ret_conv else res["x"]
|
315 |
+
return feature, res["padding_mask"]
|
316 |
+
|
317 |
+
def _hubert_extract_features(
|
318 |
+
source: torch.Tensor,
|
319 |
+
padding_mask: Optional[torch.Tensor] = None,
|
320 |
+
mask: bool = False,
|
321 |
+
ret_conv: bool = False,
|
322 |
+
output_layer: Optional[int] = None,
|
323 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
324 |
+
return hubert_extract_features(
|
325 |
+
hubert_model, source, padding_mask, mask, ret_conv, output_layer
|
326 |
+
)
|
327 |
+
|
328 |
+
hubert_model.extract_features = _hubert_extract_features
|
329 |
+
|
330 |
+
def infer(source, padding_mask, output_layer: torch.Tensor):
|
331 |
+
output_layer = output_layer.item()
|
332 |
+
logits = hubert_model.extract_features(
|
333 |
+
source=source, padding_mask=padding_mask, output_layer=output_layer
|
334 |
+
)
|
335 |
+
feats = hubert_model.final_proj(logits[0]) if output_layer == 9 else logits[0]
|
336 |
+
return feats
|
337 |
+
|
338 |
+
hubert_model.infer = infer
|
339 |
+
# hubert_model.forward=infer
|
340 |
+
# hubert_model.forward
|
341 |
+
|
342 |
+
return hubert_model
|
infer/lib/jit/get_rmvpe.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def get_rmvpe(model_path="assets/rmvpe/rmvpe.pt", device=torch.device("cpu")):
|
5 |
+
from infer.lib.rmvpe import E2E
|
6 |
+
|
7 |
+
model = E2E(4, 1, (2, 2))
|
8 |
+
ckpt = torch.load(model_path, map_location=device)
|
9 |
+
model.load_state_dict(ckpt)
|
10 |
+
model.eval()
|
11 |
+
model = model.to(device)
|
12 |
+
return model
|
infer/lib/jit/get_synthesizer.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def get_synthesizer(pth_path, device=torch.device("cpu")):
|
5 |
+
from infer.lib.infer_pack.models import (
|
6 |
+
SynthesizerTrnMs256NSFsid,
|
7 |
+
SynthesizerTrnMs256NSFsid_nono,
|
8 |
+
SynthesizerTrnMs768NSFsid,
|
9 |
+
SynthesizerTrnMs768NSFsid_nono,
|
10 |
+
)
|
11 |
+
|
12 |
+
cpt = torch.load(pth_path, map_location=torch.device("cpu"))
|
13 |
+
# tgt_sr = cpt["config"][-1]
|
14 |
+
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
15 |
+
if_f0 = cpt.get("f0", 1)
|
16 |
+
version = cpt.get("version", "v1")
|
17 |
+
if version == "v1":
|
18 |
+
if if_f0 == 1:
|
19 |
+
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=False)
|
20 |
+
else:
|
21 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
22 |
+
elif version == "v2":
|
23 |
+
if if_f0 == 1:
|
24 |
+
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=False)
|
25 |
+
else:
|
26 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
27 |
+
del net_g.enc_q
|
28 |
+
# net_g.forward = net_g.infer
|
29 |
+
# ckpt = {}
|
30 |
+
# ckpt["config"] = cpt["config"]
|
31 |
+
# ckpt["f0"] = if_f0
|
32 |
+
# ckpt["version"] = version
|
33 |
+
# ckpt["info"] = cpt.get("info", "0epoch")
|
34 |
+
net_g.load_state_dict(cpt["weight"], strict=False)
|
35 |
+
net_g = net_g.float()
|
36 |
+
net_g.eval().to(device)
|
37 |
+
return net_g, cpt
|
infer/lib/rmvpe.py
ADDED
@@ -0,0 +1,668 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
import os
|
3 |
+
from typing import List, Optional, Tuple
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from infer.lib import jit
|
8 |
+
|
9 |
+
try:
|
10 |
+
# Fix "Torch not compiled with CUDA enabled"
|
11 |
+
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
12 |
+
|
13 |
+
if torch.xpu.is_available():
|
14 |
+
from infer.modules.ipex import ipex_init
|
15 |
+
|
16 |
+
ipex_init()
|
17 |
+
except Exception: # pylint: disable=broad-exception-caught
|
18 |
+
pass
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
from librosa.util import normalize, pad_center, tiny
|
22 |
+
from scipy.signal import get_window
|
23 |
+
|
24 |
+
import logging
|
25 |
+
|
26 |
+
logger = logging.getLogger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
class STFT(torch.nn.Module):
|
30 |
+
def __init__(
|
31 |
+
self, filter_length=1024, hop_length=512, win_length=None, window="hann"
|
32 |
+
):
|
33 |
+
"""
|
34 |
+
This module implements an STFT using 1D convolution and 1D transpose convolutions.
|
35 |
+
This is a bit tricky so there are some cases that probably won't work as working
|
36 |
+
out the same sizes before and after in all overlap add setups is tough. Right now,
|
37 |
+
this code should work with hop lengths that are half the filter length (50% overlap
|
38 |
+
between frames).
|
39 |
+
|
40 |
+
Keyword Arguments:
|
41 |
+
filter_length {int} -- Length of filters used (default: {1024})
|
42 |
+
hop_length {int} -- Hop length of STFT (restrict to 50% overlap between frames) (default: {512})
|
43 |
+
win_length {[type]} -- Length of the window function applied to each frame (if not specified, it
|
44 |
+
equals the filter length). (default: {None})
|
45 |
+
window {str} -- Type of window to use (options are bartlett, hann, hamming, blackman, blackmanharris)
|
46 |
+
(default: {'hann'})
|
47 |
+
"""
|
48 |
+
super(STFT, self).__init__()
|
49 |
+
self.filter_length = filter_length
|
50 |
+
self.hop_length = hop_length
|
51 |
+
self.win_length = win_length if win_length else filter_length
|
52 |
+
self.window = window
|
53 |
+
self.forward_transform = None
|
54 |
+
self.pad_amount = int(self.filter_length / 2)
|
55 |
+
fourier_basis = np.fft.fft(np.eye(self.filter_length))
|
56 |
+
|
57 |
+
cutoff = int((self.filter_length / 2 + 1))
|
58 |
+
fourier_basis = np.vstack(
|
59 |
+
[np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]
|
60 |
+
)
|
61 |
+
forward_basis = torch.FloatTensor(fourier_basis)
|
62 |
+
inverse_basis = torch.FloatTensor(np.linalg.pinv(fourier_basis))
|
63 |
+
|
64 |
+
assert filter_length >= self.win_length
|
65 |
+
# get window and zero center pad it to filter_length
|
66 |
+
fft_window = get_window(window, self.win_length, fftbins=True)
|
67 |
+
fft_window = pad_center(fft_window, size=filter_length)
|
68 |
+
fft_window = torch.from_numpy(fft_window).float()
|
69 |
+
|
70 |
+
# window the bases
|
71 |
+
forward_basis *= fft_window
|
72 |
+
inverse_basis = (inverse_basis.T * fft_window).T
|
73 |
+
|
74 |
+
self.register_buffer("forward_basis", forward_basis.float())
|
75 |
+
self.register_buffer("inverse_basis", inverse_basis.float())
|
76 |
+
self.register_buffer("fft_window", fft_window.float())
|
77 |
+
|
78 |
+
def transform(self, input_data, return_phase=False):
|
79 |
+
"""Take input data (audio) to STFT domain.
|
80 |
+
|
81 |
+
Arguments:
|
82 |
+
input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)
|
83 |
+
|
84 |
+
Returns:
|
85 |
+
magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
|
86 |
+
num_frequencies, num_frames)
|
87 |
+
phase {tensor} -- Phase of STFT with shape (num_batch,
|
88 |
+
num_frequencies, num_frames)
|
89 |
+
"""
|
90 |
+
input_data = F.pad(
|
91 |
+
input_data,
|
92 |
+
(self.pad_amount, self.pad_amount),
|
93 |
+
mode="reflect",
|
94 |
+
)
|
95 |
+
forward_transform = input_data.unfold(
|
96 |
+
1, self.filter_length, self.hop_length
|
97 |
+
).permute(0, 2, 1)
|
98 |
+
forward_transform = torch.matmul(self.forward_basis, forward_transform)
|
99 |
+
cutoff = int((self.filter_length / 2) + 1)
|
100 |
+
real_part = forward_transform[:, :cutoff, :]
|
101 |
+
imag_part = forward_transform[:, cutoff:, :]
|
102 |
+
magnitude = torch.sqrt(real_part**2 + imag_part**2)
|
103 |
+
if return_phase:
|
104 |
+
phase = torch.atan2(imag_part.data, real_part.data)
|
105 |
+
return magnitude, phase
|
106 |
+
else:
|
107 |
+
return magnitude
|
108 |
+
|
109 |
+
def inverse(self, magnitude, phase):
|
110 |
+
"""Call the inverse STFT (iSTFT), given magnitude and phase tensors produced
|
111 |
+
by the ```transform``` function.
|
112 |
+
|
113 |
+
Arguments:
|
114 |
+
magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
|
115 |
+
num_frequencies, num_frames)
|
116 |
+
phase {tensor} -- Phase of STFT with shape (num_batch,
|
117 |
+
num_frequencies, num_frames)
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
inverse_transform {tensor} -- Reconstructed audio given magnitude and phase. Of
|
121 |
+
shape (num_batch, num_samples)
|
122 |
+
"""
|
123 |
+
cat = torch.cat(
|
124 |
+
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
|
125 |
+
)
|
126 |
+
fold = torch.nn.Fold(
|
127 |
+
output_size=(1, (cat.size(-1) - 1) * self.hop_length + self.filter_length),
|
128 |
+
kernel_size=(1, self.filter_length),
|
129 |
+
stride=(1, self.hop_length),
|
130 |
+
)
|
131 |
+
inverse_transform = torch.matmul(self.inverse_basis, cat)
|
132 |
+
inverse_transform = fold(inverse_transform)[
|
133 |
+
:, 0, 0, self.pad_amount : -self.pad_amount
|
134 |
+
]
|
135 |
+
window_square_sum = (
|
136 |
+
self.fft_window.pow(2).repeat(cat.size(-1), 1).T.unsqueeze(0)
|
137 |
+
)
|
138 |
+
window_square_sum = fold(window_square_sum)[
|
139 |
+
:, 0, 0, self.pad_amount : -self.pad_amount
|
140 |
+
]
|
141 |
+
inverse_transform /= window_square_sum
|
142 |
+
return inverse_transform
|
143 |
+
|
144 |
+
def forward(self, input_data):
|
145 |
+
"""Take input data (audio) to STFT domain and then back to audio.
|
146 |
+
|
147 |
+
Arguments:
|
148 |
+
input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)
|
149 |
+
|
150 |
+
Returns:
|
151 |
+
reconstruction {tensor} -- Reconstructed audio given magnitude and phase. Of
|
152 |
+
shape (num_batch, num_samples)
|
153 |
+
"""
|
154 |
+
self.magnitude, self.phase = self.transform(input_data, return_phase=True)
|
155 |
+
reconstruction = self.inverse(self.magnitude, self.phase)
|
156 |
+
return reconstruction
|
157 |
+
|
158 |
+
|
159 |
+
from time import time as ttime
|
160 |
+
|
161 |
+
|
162 |
+
class BiGRU(nn.Module):
|
163 |
+
def __init__(self, input_features, hidden_features, num_layers):
|
164 |
+
super(BiGRU, self).__init__()
|
165 |
+
self.gru = nn.GRU(
|
166 |
+
input_features,
|
167 |
+
hidden_features,
|
168 |
+
num_layers=num_layers,
|
169 |
+
batch_first=True,
|
170 |
+
bidirectional=True,
|
171 |
+
)
|
172 |
+
|
173 |
+
def forward(self, x):
|
174 |
+
return self.gru(x)[0]
|
175 |
+
|
176 |
+
|
177 |
+
class ConvBlockRes(nn.Module):
|
178 |
+
def __init__(self, in_channels, out_channels, momentum=0.01):
|
179 |
+
super(ConvBlockRes, self).__init__()
|
180 |
+
self.conv = nn.Sequential(
|
181 |
+
nn.Conv2d(
|
182 |
+
in_channels=in_channels,
|
183 |
+
out_channels=out_channels,
|
184 |
+
kernel_size=(3, 3),
|
185 |
+
stride=(1, 1),
|
186 |
+
padding=(1, 1),
|
187 |
+
bias=False,
|
188 |
+
),
|
189 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
190 |
+
nn.ReLU(),
|
191 |
+
nn.Conv2d(
|
192 |
+
in_channels=out_channels,
|
193 |
+
out_channels=out_channels,
|
194 |
+
kernel_size=(3, 3),
|
195 |
+
stride=(1, 1),
|
196 |
+
padding=(1, 1),
|
197 |
+
bias=False,
|
198 |
+
),
|
199 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
200 |
+
nn.ReLU(),
|
201 |
+
)
|
202 |
+
# self.shortcut:Optional[nn.Module] = None
|
203 |
+
if in_channels != out_channels:
|
204 |
+
self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
|
205 |
+
|
206 |
+
def forward(self, x: torch.Tensor):
|
207 |
+
if not hasattr(self, "shortcut"):
|
208 |
+
return self.conv(x) + x
|
209 |
+
else:
|
210 |
+
return self.conv(x) + self.shortcut(x)
|
211 |
+
|
212 |
+
|
213 |
+
class Encoder(nn.Module):
|
214 |
+
def __init__(
|
215 |
+
self,
|
216 |
+
in_channels,
|
217 |
+
in_size,
|
218 |
+
n_encoders,
|
219 |
+
kernel_size,
|
220 |
+
n_blocks,
|
221 |
+
out_channels=16,
|
222 |
+
momentum=0.01,
|
223 |
+
):
|
224 |
+
super(Encoder, self).__init__()
|
225 |
+
self.n_encoders = n_encoders
|
226 |
+
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
|
227 |
+
self.layers = nn.ModuleList()
|
228 |
+
self.latent_channels = []
|
229 |
+
for i in range(self.n_encoders):
|
230 |
+
self.layers.append(
|
231 |
+
ResEncoderBlock(
|
232 |
+
in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
|
233 |
+
)
|
234 |
+
)
|
235 |
+
self.latent_channels.append([out_channels, in_size])
|
236 |
+
in_channels = out_channels
|
237 |
+
out_channels *= 2
|
238 |
+
in_size //= 2
|
239 |
+
self.out_size = in_size
|
240 |
+
self.out_channel = out_channels
|
241 |
+
|
242 |
+
def forward(self, x: torch.Tensor):
|
243 |
+
concat_tensors: List[torch.Tensor] = []
|
244 |
+
x = self.bn(x)
|
245 |
+
for i, layer in enumerate(self.layers):
|
246 |
+
t, x = layer(x)
|
247 |
+
concat_tensors.append(t)
|
248 |
+
return x, concat_tensors
|
249 |
+
|
250 |
+
|
251 |
+
class ResEncoderBlock(nn.Module):
|
252 |
+
def __init__(
|
253 |
+
self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
|
254 |
+
):
|
255 |
+
super(ResEncoderBlock, self).__init__()
|
256 |
+
self.n_blocks = n_blocks
|
257 |
+
self.conv = nn.ModuleList()
|
258 |
+
self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
|
259 |
+
for i in range(n_blocks - 1):
|
260 |
+
self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
|
261 |
+
self.kernel_size = kernel_size
|
262 |
+
if self.kernel_size is not None:
|
263 |
+
self.pool = nn.AvgPool2d(kernel_size=kernel_size)
|
264 |
+
|
265 |
+
def forward(self, x):
|
266 |
+
for i, conv in enumerate(self.conv):
|
267 |
+
x = conv(x)
|
268 |
+
if self.kernel_size is not None:
|
269 |
+
return x, self.pool(x)
|
270 |
+
else:
|
271 |
+
return x
|
272 |
+
|
273 |
+
|
274 |
+
class Intermediate(nn.Module): #
|
275 |
+
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
|
276 |
+
super(Intermediate, self).__init__()
|
277 |
+
self.n_inters = n_inters
|
278 |
+
self.layers = nn.ModuleList()
|
279 |
+
self.layers.append(
|
280 |
+
ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
|
281 |
+
)
|
282 |
+
for i in range(self.n_inters - 1):
|
283 |
+
self.layers.append(
|
284 |
+
ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
|
285 |
+
)
|
286 |
+
|
287 |
+
def forward(self, x):
|
288 |
+
for i, layer in enumerate(self.layers):
|
289 |
+
x = layer(x)
|
290 |
+
return x
|
291 |
+
|
292 |
+
|
293 |
+
class ResDecoderBlock(nn.Module):
|
294 |
+
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
|
295 |
+
super(ResDecoderBlock, self).__init__()
|
296 |
+
out_padding = (0, 1) if stride == (1, 2) else (1, 1)
|
297 |
+
self.n_blocks = n_blocks
|
298 |
+
self.conv1 = nn.Sequential(
|
299 |
+
nn.ConvTranspose2d(
|
300 |
+
in_channels=in_channels,
|
301 |
+
out_channels=out_channels,
|
302 |
+
kernel_size=(3, 3),
|
303 |
+
stride=stride,
|
304 |
+
padding=(1, 1),
|
305 |
+
output_padding=out_padding,
|
306 |
+
bias=False,
|
307 |
+
),
|
308 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
309 |
+
nn.ReLU(),
|
310 |
+
)
|
311 |
+
self.conv2 = nn.ModuleList()
|
312 |
+
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
|
313 |
+
for i in range(n_blocks - 1):
|
314 |
+
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
|
315 |
+
|
316 |
+
def forward(self, x, concat_tensor):
|
317 |
+
x = self.conv1(x)
|
318 |
+
x = torch.cat((x, concat_tensor), dim=1)
|
319 |
+
for i, conv2 in enumerate(self.conv2):
|
320 |
+
x = conv2(x)
|
321 |
+
return x
|
322 |
+
|
323 |
+
|
324 |
+
class Decoder(nn.Module):
|
325 |
+
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
|
326 |
+
super(Decoder, self).__init__()
|
327 |
+
self.layers = nn.ModuleList()
|
328 |
+
self.n_decoders = n_decoders
|
329 |
+
for i in range(self.n_decoders):
|
330 |
+
out_channels = in_channels // 2
|
331 |
+
self.layers.append(
|
332 |
+
ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
|
333 |
+
)
|
334 |
+
in_channels = out_channels
|
335 |
+
|
336 |
+
def forward(self, x: torch.Tensor, concat_tensors: List[torch.Tensor]):
|
337 |
+
for i, layer in enumerate(self.layers):
|
338 |
+
x = layer(x, concat_tensors[-1 - i])
|
339 |
+
return x
|
340 |
+
|
341 |
+
|
342 |
+
class DeepUnet(nn.Module):
|
343 |
+
def __init__(
|
344 |
+
self,
|
345 |
+
kernel_size,
|
346 |
+
n_blocks,
|
347 |
+
en_de_layers=5,
|
348 |
+
inter_layers=4,
|
349 |
+
in_channels=1,
|
350 |
+
en_out_channels=16,
|
351 |
+
):
|
352 |
+
super(DeepUnet, self).__init__()
|
353 |
+
self.encoder = Encoder(
|
354 |
+
in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
|
355 |
+
)
|
356 |
+
self.intermediate = Intermediate(
|
357 |
+
self.encoder.out_channel // 2,
|
358 |
+
self.encoder.out_channel,
|
359 |
+
inter_layers,
|
360 |
+
n_blocks,
|
361 |
+
)
|
362 |
+
self.decoder = Decoder(
|
363 |
+
self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
|
364 |
+
)
|
365 |
+
|
366 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
367 |
+
x, concat_tensors = self.encoder(x)
|
368 |
+
x = self.intermediate(x)
|
369 |
+
x = self.decoder(x, concat_tensors)
|
370 |
+
return x
|
371 |
+
|
372 |
+
|
373 |
+
class E2E(nn.Module):
|
374 |
+
def __init__(
|
375 |
+
self,
|
376 |
+
n_blocks,
|
377 |
+
n_gru,
|
378 |
+
kernel_size,
|
379 |
+
en_de_layers=5,
|
380 |
+
inter_layers=4,
|
381 |
+
in_channels=1,
|
382 |
+
en_out_channels=16,
|
383 |
+
):
|
384 |
+
super(E2E, self).__init__()
|
385 |
+
self.unet = DeepUnet(
|
386 |
+
kernel_size,
|
387 |
+
n_blocks,
|
388 |
+
en_de_layers,
|
389 |
+
inter_layers,
|
390 |
+
in_channels,
|
391 |
+
en_out_channels,
|
392 |
+
)
|
393 |
+
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
|
394 |
+
if n_gru:
|
395 |
+
self.fc = nn.Sequential(
|
396 |
+
BiGRU(3 * 128, 256, n_gru),
|
397 |
+
nn.Linear(512, 360),
|
398 |
+
nn.Dropout(0.25),
|
399 |
+
nn.Sigmoid(),
|
400 |
+
)
|
401 |
+
else:
|
402 |
+
self.fc = nn.Sequential(
|
403 |
+
nn.Linear(3 * nn.N_MELS, nn.N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
|
404 |
+
)
|
405 |
+
|
406 |
+
def forward(self, mel):
|
407 |
+
# print(mel.shape)
|
408 |
+
mel = mel.transpose(-1, -2).unsqueeze(1)
|
409 |
+
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
|
410 |
+
x = self.fc(x)
|
411 |
+
# print(x.shape)
|
412 |
+
return x
|
413 |
+
|
414 |
+
|
415 |
+
from librosa.filters import mel
|
416 |
+
|
417 |
+
|
418 |
+
class MelSpectrogram(torch.nn.Module):
|
419 |
+
def __init__(
|
420 |
+
self,
|
421 |
+
is_half,
|
422 |
+
n_mel_channels,
|
423 |
+
sampling_rate,
|
424 |
+
win_length,
|
425 |
+
hop_length,
|
426 |
+
n_fft=None,
|
427 |
+
mel_fmin=0,
|
428 |
+
mel_fmax=None,
|
429 |
+
clamp=1e-5,
|
430 |
+
):
|
431 |
+
super().__init__()
|
432 |
+
n_fft = win_length if n_fft is None else n_fft
|
433 |
+
self.hann_window = {}
|
434 |
+
mel_basis = mel(
|
435 |
+
sr=sampling_rate,
|
436 |
+
n_fft=n_fft,
|
437 |
+
n_mels=n_mel_channels,
|
438 |
+
fmin=mel_fmin,
|
439 |
+
fmax=mel_fmax,
|
440 |
+
htk=True,
|
441 |
+
)
|
442 |
+
mel_basis = torch.from_numpy(mel_basis).float()
|
443 |
+
self.register_buffer("mel_basis", mel_basis)
|
444 |
+
self.n_fft = win_length if n_fft is None else n_fft
|
445 |
+
self.hop_length = hop_length
|
446 |
+
self.win_length = win_length
|
447 |
+
self.sampling_rate = sampling_rate
|
448 |
+
self.n_mel_channels = n_mel_channels
|
449 |
+
self.clamp = clamp
|
450 |
+
self.is_half = is_half
|
451 |
+
|
452 |
+
def forward(self, audio, keyshift=0, speed=1, center=True):
|
453 |
+
factor = 2 ** (keyshift / 12)
|
454 |
+
n_fft_new = int(np.round(self.n_fft * factor))
|
455 |
+
win_length_new = int(np.round(self.win_length * factor))
|
456 |
+
hop_length_new = int(np.round(self.hop_length * speed))
|
457 |
+
keyshift_key = str(keyshift) + "_" + str(audio.device)
|
458 |
+
if keyshift_key not in self.hann_window:
|
459 |
+
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
|
460 |
+
audio.device
|
461 |
+
)
|
462 |
+
if "privateuseone" in str(audio.device):
|
463 |
+
if not hasattr(self, "stft"):
|
464 |
+
self.stft = STFT(
|
465 |
+
filter_length=n_fft_new,
|
466 |
+
hop_length=hop_length_new,
|
467 |
+
win_length=win_length_new,
|
468 |
+
window="hann",
|
469 |
+
).to(audio.device)
|
470 |
+
magnitude = self.stft.transform(audio)
|
471 |
+
else:
|
472 |
+
fft = torch.stft(
|
473 |
+
audio,
|
474 |
+
n_fft=n_fft_new,
|
475 |
+
hop_length=hop_length_new,
|
476 |
+
win_length=win_length_new,
|
477 |
+
window=self.hann_window[keyshift_key],
|
478 |
+
center=center,
|
479 |
+
return_complex=True,
|
480 |
+
)
|
481 |
+
magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
|
482 |
+
if keyshift != 0:
|
483 |
+
size = self.n_fft // 2 + 1
|
484 |
+
resize = magnitude.size(1)
|
485 |
+
if resize < size:
|
486 |
+
magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
|
487 |
+
magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
|
488 |
+
mel_output = torch.matmul(self.mel_basis, magnitude)
|
489 |
+
if self.is_half == True:
|
490 |
+
mel_output = mel_output.half()
|
491 |
+
log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
|
492 |
+
return log_mel_spec
|
493 |
+
|
494 |
+
|
495 |
+
class RMVPE:
|
496 |
+
def __init__(self, model_path: str, is_half, device=None, use_jit=False):
|
497 |
+
self.resample_kernel = {}
|
498 |
+
self.resample_kernel = {}
|
499 |
+
self.is_half = is_half
|
500 |
+
if device is None:
|
501 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
502 |
+
self.device = device
|
503 |
+
self.mel_extractor = MelSpectrogram(
|
504 |
+
is_half, 128, 16000, 1024, 160, None, 30, 8000
|
505 |
+
).to(device)
|
506 |
+
if "privateuseone" in str(device):
|
507 |
+
import onnxruntime as ort
|
508 |
+
|
509 |
+
ort_session = ort.InferenceSession(
|
510 |
+
"%s/rmvpe.onnx" % os.environ["rmvpe_root"],
|
511 |
+
providers=["DmlExecutionProvider"],
|
512 |
+
)
|
513 |
+
self.model = ort_session
|
514 |
+
else:
|
515 |
+
if str(self.device) == "cuda":
|
516 |
+
self.device = torch.device("cuda:0")
|
517 |
+
|
518 |
+
def get_jit_model():
|
519 |
+
jit_model_path = model_path.rstrip(".pth")
|
520 |
+
jit_model_path += ".half.jit" if is_half else ".jit"
|
521 |
+
reload = False
|
522 |
+
if os.path.exists(jit_model_path):
|
523 |
+
ckpt = jit.load(jit_model_path)
|
524 |
+
model_device = ckpt["device"]
|
525 |
+
if model_device != str(self.device):
|
526 |
+
reload = True
|
527 |
+
else:
|
528 |
+
reload = True
|
529 |
+
|
530 |
+
if reload:
|
531 |
+
ckpt = jit.rmvpe_jit_export(
|
532 |
+
model_path=model_path,
|
533 |
+
mode="script",
|
534 |
+
inputs_path=None,
|
535 |
+
save_path=jit_model_path,
|
536 |
+
device=device,
|
537 |
+
is_half=is_half,
|
538 |
+
)
|
539 |
+
model = torch.jit.load(BytesIO(ckpt["model"]), map_location=device)
|
540 |
+
return model
|
541 |
+
|
542 |
+
def get_default_model():
|
543 |
+
model = E2E(4, 1, (2, 2))
|
544 |
+
ckpt = torch.load(model_path, map_location="cpu")
|
545 |
+
model.load_state_dict(ckpt)
|
546 |
+
model.eval()
|
547 |
+
if is_half:
|
548 |
+
model = model.half()
|
549 |
+
else:
|
550 |
+
model = model.float()
|
551 |
+
return model
|
552 |
+
|
553 |
+
if use_jit:
|
554 |
+
if is_half and "cpu" in str(self.device):
|
555 |
+
logger.warning(
|
556 |
+
"Use default rmvpe model. \
|
557 |
+
Jit is not supported on the CPU for half floating point"
|
558 |
+
)
|
559 |
+
self.model = get_default_model()
|
560 |
+
else:
|
561 |
+
self.model = get_jit_model()
|
562 |
+
else:
|
563 |
+
self.model = get_default_model()
|
564 |
+
|
565 |
+
self.model = self.model.to(device)
|
566 |
+
cents_mapping = 20 * np.arange(360) + 1997.3794084376191
|
567 |
+
self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
|
568 |
+
|
569 |
+
def mel2hidden(self, mel):
|
570 |
+
with torch.no_grad():
|
571 |
+
n_frames = mel.shape[-1]
|
572 |
+
n_pad = 32 * ((n_frames - 1) // 32 + 1) - n_frames
|
573 |
+
if n_pad > 0:
|
574 |
+
mel = F.pad(mel, (0, n_pad), mode="constant")
|
575 |
+
if "privateuseone" in str(self.device):
|
576 |
+
onnx_input_name = self.model.get_inputs()[0].name
|
577 |
+
onnx_outputs_names = self.model.get_outputs()[0].name
|
578 |
+
hidden = self.model.run(
|
579 |
+
[onnx_outputs_names],
|
580 |
+
input_feed={onnx_input_name: mel.cpu().numpy()},
|
581 |
+
)[0]
|
582 |
+
else:
|
583 |
+
mel = mel.half() if self.is_half else mel.float()
|
584 |
+
hidden = self.model(mel)
|
585 |
+
return hidden[:, :n_frames]
|
586 |
+
|
587 |
+
def decode(self, hidden, thred=0.03):
|
588 |
+
cents_pred = self.to_local_average_cents(hidden, thred=thred)
|
589 |
+
f0 = 10 * (2 ** (cents_pred / 1200))
|
590 |
+
f0[f0 == 10] = 0
|
591 |
+
# f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
|
592 |
+
return f0
|
593 |
+
|
594 |
+
def infer_from_audio(self, audio, thred=0.03):
|
595 |
+
# torch.cuda.synchronize()
|
596 |
+
t0 = ttime()
|
597 |
+
mel = self.mel_extractor(
|
598 |
+
torch.from_numpy(audio).float().to(self.device).unsqueeze(0), center=True
|
599 |
+
)
|
600 |
+
# print(123123123,mel.device.type)
|
601 |
+
# torch.cuda.synchronize()
|
602 |
+
t1 = ttime()
|
603 |
+
hidden = self.mel2hidden(mel)
|
604 |
+
# torch.cuda.synchronize()
|
605 |
+
t2 = ttime()
|
606 |
+
# print(234234,hidden.device.type)
|
607 |
+
if "privateuseone" not in str(self.device):
|
608 |
+
hidden = hidden.squeeze(0).cpu().numpy()
|
609 |
+
else:
|
610 |
+
hidden = hidden[0]
|
611 |
+
if self.is_half == True:
|
612 |
+
hidden = hidden.astype("float32")
|
613 |
+
|
614 |
+
f0 = self.decode(hidden, thred=thred)
|
615 |
+
# torch.cuda.synchronize()
|
616 |
+
t3 = ttime()
|
617 |
+
# print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
|
618 |
+
return f0
|
619 |
+
|
620 |
+
def to_local_average_cents(self, salience, thred=0.05):
|
621 |
+
# t0 = ttime()
|
622 |
+
center = np.argmax(salience, axis=1) # 帧长#index
|
623 |
+
salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368
|
624 |
+
# t1 = ttime()
|
625 |
+
center += 4
|
626 |
+
todo_salience = []
|
627 |
+
todo_cents_mapping = []
|
628 |
+
starts = center - 4
|
629 |
+
ends = center + 5
|
630 |
+
for idx in range(salience.shape[0]):
|
631 |
+
todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
|
632 |
+
todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
|
633 |
+
# t2 = ttime()
|
634 |
+
todo_salience = np.array(todo_salience) # 帧长,9
|
635 |
+
todo_cents_mapping = np.array(todo_cents_mapping) # 帧长,9
|
636 |
+
product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
|
637 |
+
weight_sum = np.sum(todo_salience, 1) # 帧长
|
638 |
+
devided = product_sum / weight_sum # 帧长
|
639 |
+
# t3 = ttime()
|
640 |
+
maxx = np.max(salience, axis=1) # 帧长
|
641 |
+
devided[maxx <= thred] = 0
|
642 |
+
# t4 = ttime()
|
643 |
+
# print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
644 |
+
return devided
|
645 |
+
|
646 |
+
|
647 |
+
if __name__ == "__main__":
|
648 |
+
import librosa
|
649 |
+
import soundfile as sf
|
650 |
+
|
651 |
+
audio, sampling_rate = sf.read(r"C:\Users\liujing04\Desktop\Z\冬之花clip1.wav")
|
652 |
+
if len(audio.shape) > 1:
|
653 |
+
audio = librosa.to_mono(audio.transpose(1, 0))
|
654 |
+
audio_bak = audio.copy()
|
655 |
+
if sampling_rate != 16000:
|
656 |
+
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
657 |
+
model_path = r"D:\BaiduNetdiskDownload\RVC-beta-v2-0727AMD_realtime\rmvpe.pt"
|
658 |
+
thred = 0.03 # 0.01
|
659 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
660 |
+
rmvpe = RMVPE(model_path, is_half=False, device=device)
|
661 |
+
t0 = ttime()
|
662 |
+
f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
663 |
+
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
664 |
+
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
665 |
+
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
666 |
+
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
667 |
+
t1 = ttime()
|
668 |
+
logger.info("%s %.2f", f0.shape, t1 - t0)
|
infer/lib/slicer2.py
ADDED
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
# This function is obtained from librosa.
|
5 |
+
def get_rms(
|
6 |
+
y,
|
7 |
+
frame_length=2048,
|
8 |
+
hop_length=512,
|
9 |
+
pad_mode="constant",
|
10 |
+
):
|
11 |
+
padding = (int(frame_length // 2), int(frame_length // 2))
|
12 |
+
y = np.pad(y, padding, mode=pad_mode)
|
13 |
+
|
14 |
+
axis = -1
|
15 |
+
# put our new within-frame axis at the end for now
|
16 |
+
out_strides = y.strides + tuple([y.strides[axis]])
|
17 |
+
# Reduce the shape on the framing axis
|
18 |
+
x_shape_trimmed = list(y.shape)
|
19 |
+
x_shape_trimmed[axis] -= frame_length - 1
|
20 |
+
out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
|
21 |
+
xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides)
|
22 |
+
if axis < 0:
|
23 |
+
target_axis = axis - 1
|
24 |
+
else:
|
25 |
+
target_axis = axis + 1
|
26 |
+
xw = np.moveaxis(xw, -1, target_axis)
|
27 |
+
# Downsample along the target axis
|
28 |
+
slices = [slice(None)] * xw.ndim
|
29 |
+
slices[axis] = slice(0, None, hop_length)
|
30 |
+
x = xw[tuple(slices)]
|
31 |
+
|
32 |
+
# Calculate power
|
33 |
+
power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
|
34 |
+
|
35 |
+
return np.sqrt(power)
|
36 |
+
|
37 |
+
|
38 |
+
class Slicer:
|
39 |
+
def __init__(
|
40 |
+
self,
|
41 |
+
sr: int,
|
42 |
+
threshold: float = -40.0,
|
43 |
+
min_length: int = 5000,
|
44 |
+
min_interval: int = 300,
|
45 |
+
hop_size: int = 20,
|
46 |
+
max_sil_kept: int = 5000,
|
47 |
+
):
|
48 |
+
if not min_length >= min_interval >= hop_size:
|
49 |
+
raise ValueError(
|
50 |
+
"The following condition must be satisfied: min_length >= min_interval >= hop_size"
|
51 |
+
)
|
52 |
+
if not max_sil_kept >= hop_size:
|
53 |
+
raise ValueError(
|
54 |
+
"The following condition must be satisfied: max_sil_kept >= hop_size"
|
55 |
+
)
|
56 |
+
min_interval = sr * min_interval / 1000
|
57 |
+
self.threshold = 10 ** (threshold / 20.0)
|
58 |
+
self.hop_size = round(sr * hop_size / 1000)
|
59 |
+
self.win_size = min(round(min_interval), 4 * self.hop_size)
|
60 |
+
self.min_length = round(sr * min_length / 1000 / self.hop_size)
|
61 |
+
self.min_interval = round(min_interval / self.hop_size)
|
62 |
+
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
|
63 |
+
|
64 |
+
def _apply_slice(self, waveform, begin, end):
|
65 |
+
if len(waveform.shape) > 1:
|
66 |
+
return waveform[
|
67 |
+
:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)
|
68 |
+
]
|
69 |
+
else:
|
70 |
+
return waveform[
|
71 |
+
begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)
|
72 |
+
]
|
73 |
+
|
74 |
+
# @timeit
|
75 |
+
def slice(self, waveform):
|
76 |
+
if len(waveform.shape) > 1:
|
77 |
+
samples = waveform.mean(axis=0)
|
78 |
+
else:
|
79 |
+
samples = waveform
|
80 |
+
if samples.shape[0] <= self.min_length:
|
81 |
+
return [waveform]
|
82 |
+
rms_list = get_rms(
|
83 |
+
y=samples, frame_length=self.win_size, hop_length=self.hop_size
|
84 |
+
).squeeze(0)
|
85 |
+
sil_tags = []
|
86 |
+
silence_start = None
|
87 |
+
clip_start = 0
|
88 |
+
for i, rms in enumerate(rms_list):
|
89 |
+
# Keep looping while frame is silent.
|
90 |
+
if rms < self.threshold:
|
91 |
+
# Record start of silent frames.
|
92 |
+
if silence_start is None:
|
93 |
+
silence_start = i
|
94 |
+
continue
|
95 |
+
# Keep looping while frame is not silent and silence start has not been recorded.
|
96 |
+
if silence_start is None:
|
97 |
+
continue
|
98 |
+
# Clear recorded silence start if interval is not enough or clip is too short
|
99 |
+
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
|
100 |
+
need_slice_middle = (
|
101 |
+
i - silence_start >= self.min_interval
|
102 |
+
and i - clip_start >= self.min_length
|
103 |
+
)
|
104 |
+
if not is_leading_silence and not need_slice_middle:
|
105 |
+
silence_start = None
|
106 |
+
continue
|
107 |
+
# Need slicing. Record the range of silent frames to be removed.
|
108 |
+
if i - silence_start <= self.max_sil_kept:
|
109 |
+
pos = rms_list[silence_start : i + 1].argmin() + silence_start
|
110 |
+
if silence_start == 0:
|
111 |
+
sil_tags.append((0, pos))
|
112 |
+
else:
|
113 |
+
sil_tags.append((pos, pos))
|
114 |
+
clip_start = pos
|
115 |
+
elif i - silence_start <= self.max_sil_kept * 2:
|
116 |
+
pos = rms_list[
|
117 |
+
i - self.max_sil_kept : silence_start + self.max_sil_kept + 1
|
118 |
+
].argmin()
|
119 |
+
pos += i - self.max_sil_kept
|
120 |
+
pos_l = (
|
121 |
+
rms_list[
|
122 |
+
silence_start : silence_start + self.max_sil_kept + 1
|
123 |
+
].argmin()
|
124 |
+
+ silence_start
|
125 |
+
)
|
126 |
+
pos_r = (
|
127 |
+
rms_list[i - self.max_sil_kept : i + 1].argmin()
|
128 |
+
+ i
|
129 |
+
- self.max_sil_kept
|
130 |
+
)
|
131 |
+
if silence_start == 0:
|
132 |
+
sil_tags.append((0, pos_r))
|
133 |
+
clip_start = pos_r
|
134 |
+
else:
|
135 |
+
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
|
136 |
+
clip_start = max(pos_r, pos)
|
137 |
+
else:
|
138 |
+
pos_l = (
|
139 |
+
rms_list[
|
140 |
+
silence_start : silence_start + self.max_sil_kept + 1
|
141 |
+
].argmin()
|
142 |
+
+ silence_start
|
143 |
+
)
|
144 |
+
pos_r = (
|
145 |
+
rms_list[i - self.max_sil_kept : i + 1].argmin()
|
146 |
+
+ i
|
147 |
+
- self.max_sil_kept
|
148 |
+
)
|
149 |
+
if silence_start == 0:
|
150 |
+
sil_tags.append((0, pos_r))
|
151 |
+
else:
|
152 |
+
sil_tags.append((pos_l, pos_r))
|
153 |
+
clip_start = pos_r
|
154 |
+
silence_start = None
|
155 |
+
# Deal with trailing silence.
|
156 |
+
total_frames = rms_list.shape[0]
|
157 |
+
if (
|
158 |
+
silence_start is not None
|
159 |
+
and total_frames - silence_start >= self.min_interval
|
160 |
+
):
|
161 |
+
silence_end = min(total_frames, silence_start + self.max_sil_kept)
|
162 |
+
pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
|
163 |
+
sil_tags.append((pos, total_frames + 1))
|
164 |
+
# Apply and return slices.
|
165 |
+
if len(sil_tags) == 0:
|
166 |
+
return [waveform]
|
167 |
+
else:
|
168 |
+
chunks = []
|
169 |
+
if sil_tags[0][0] > 0:
|
170 |
+
chunks.append(self._apply_slice(waveform, 0, sil_tags[0][0]))
|
171 |
+
for i in range(len(sil_tags) - 1):
|
172 |
+
chunks.append(
|
173 |
+
self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0])
|
174 |
+
)
|
175 |
+
if sil_tags[-1][1] < total_frames:
|
176 |
+
chunks.append(
|
177 |
+
self._apply_slice(waveform, sil_tags[-1][1], total_frames)
|
178 |
+
)
|
179 |
+
return chunks
|
180 |
+
|
181 |
+
|
182 |
+
def main():
|
183 |
+
import os.path
|
184 |
+
from argparse import ArgumentParser
|
185 |
+
|
186 |
+
import librosa
|
187 |
+
import soundfile
|
188 |
+
|
189 |
+
parser = ArgumentParser()
|
190 |
+
parser.add_argument("audio", type=str, help="The audio to be sliced")
|
191 |
+
parser.add_argument(
|
192 |
+
"--out", type=str, help="Output directory of the sliced audio clips"
|
193 |
+
)
|
194 |
+
parser.add_argument(
|
195 |
+
"--db_thresh",
|
196 |
+
type=float,
|
197 |
+
required=False,
|
198 |
+
default=-40,
|
199 |
+
help="The dB threshold for silence detection",
|
200 |
+
)
|
201 |
+
parser.add_argument(
|
202 |
+
"--min_length",
|
203 |
+
type=int,
|
204 |
+
required=False,
|
205 |
+
default=5000,
|
206 |
+
help="The minimum milliseconds required for each sliced audio clip",
|
207 |
+
)
|
208 |
+
parser.add_argument(
|
209 |
+
"--min_interval",
|
210 |
+
type=int,
|
211 |
+
required=False,
|
212 |
+
default=300,
|
213 |
+
help="The minimum milliseconds for a silence part to be sliced",
|
214 |
+
)
|
215 |
+
parser.add_argument(
|
216 |
+
"--hop_size",
|
217 |
+
type=int,
|
218 |
+
required=False,
|
219 |
+
default=10,
|
220 |
+
help="Frame length in milliseconds",
|
221 |
+
)
|
222 |
+
parser.add_argument(
|
223 |
+
"--max_sil_kept",
|
224 |
+
type=int,
|
225 |
+
required=False,
|
226 |
+
default=500,
|
227 |
+
help="The maximum silence length kept around the sliced clip, presented in milliseconds",
|
228 |
+
)
|
229 |
+
args = parser.parse_args()
|
230 |
+
out = args.out
|
231 |
+
if out is None:
|
232 |
+
out = os.path.dirname(os.path.abspath(args.audio))
|
233 |
+
audio, sr = librosa.load(args.audio, sr=None, mono=False)
|
234 |
+
slicer = Slicer(
|
235 |
+
sr=sr,
|
236 |
+
threshold=args.db_thresh,
|
237 |
+
min_length=args.min_length,
|
238 |
+
min_interval=args.min_interval,
|
239 |
+
hop_size=args.hop_size,
|
240 |
+
max_sil_kept=args.max_sil_kept,
|
241 |
+
)
|
242 |
+
chunks = slicer.slice(audio)
|
243 |
+
if not os.path.exists(out):
|
244 |
+
os.makedirs(out)
|
245 |
+
for i, chunk in enumerate(chunks):
|
246 |
+
if len(chunk.shape) > 1:
|
247 |
+
chunk = chunk.T
|
248 |
+
soundfile.write(
|
249 |
+
os.path.join(
|
250 |
+
out,
|
251 |
+
f"%s_%d.wav"
|
252 |
+
% (os.path.basename(args.audio).rsplit(".", maxsplit=1)[0], i),
|
253 |
+
),
|
254 |
+
chunk,
|
255 |
+
sr,
|
256 |
+
)
|
257 |
+
|
258 |
+
|
259 |
+
if __name__ == "__main__":
|
260 |
+
main()
|
infer/lib/train/data_utils.py
ADDED
@@ -0,0 +1,517 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import traceback
|
3 |
+
import logging
|
4 |
+
|
5 |
+
logger = logging.getLogger(__name__)
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.utils.data
|
10 |
+
|
11 |
+
from infer.lib.train.mel_processing import spectrogram_torch
|
12 |
+
from infer.lib.train.utils import load_filepaths_and_text, load_wav_to_torch
|
13 |
+
|
14 |
+
|
15 |
+
class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
16 |
+
"""
|
17 |
+
1) loads audio, text pairs
|
18 |
+
2) normalizes text and converts them to sequences of integers
|
19 |
+
3) computes spectrograms from audio files.
|
20 |
+
"""
|
21 |
+
|
22 |
+
def __init__(self, audiopaths_and_text, hparams):
|
23 |
+
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
|
24 |
+
self.max_wav_value = hparams.max_wav_value
|
25 |
+
self.sampling_rate = hparams.sampling_rate
|
26 |
+
self.filter_length = hparams.filter_length
|
27 |
+
self.hop_length = hparams.hop_length
|
28 |
+
self.win_length = hparams.win_length
|
29 |
+
self.sampling_rate = hparams.sampling_rate
|
30 |
+
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
31 |
+
self.max_text_len = getattr(hparams, "max_text_len", 5000)
|
32 |
+
self._filter()
|
33 |
+
|
34 |
+
def _filter(self):
|
35 |
+
"""
|
36 |
+
Filter text & store spec lengths
|
37 |
+
"""
|
38 |
+
# Store spectrogram lengths for Bucketing
|
39 |
+
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
40 |
+
# spec_length = wav_length // hop_length
|
41 |
+
audiopaths_and_text_new = []
|
42 |
+
lengths = []
|
43 |
+
for audiopath, text, pitch, pitchf, dv in self.audiopaths_and_text:
|
44 |
+
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
45 |
+
audiopaths_and_text_new.append([audiopath, text, pitch, pitchf, dv])
|
46 |
+
lengths.append(os.path.getsize(audiopath) // (3 * self.hop_length))
|
47 |
+
self.audiopaths_and_text = audiopaths_and_text_new
|
48 |
+
self.lengths = lengths
|
49 |
+
|
50 |
+
def get_sid(self, sid):
|
51 |
+
sid = torch.LongTensor([int(sid)])
|
52 |
+
return sid
|
53 |
+
|
54 |
+
def get_audio_text_pair(self, audiopath_and_text):
|
55 |
+
# separate filename and text
|
56 |
+
file = audiopath_and_text[0]
|
57 |
+
phone = audiopath_and_text[1]
|
58 |
+
pitch = audiopath_and_text[2]
|
59 |
+
pitchf = audiopath_and_text[3]
|
60 |
+
dv = audiopath_and_text[4]
|
61 |
+
|
62 |
+
phone, pitch, pitchf = self.get_labels(phone, pitch, pitchf)
|
63 |
+
spec, wav = self.get_audio(file)
|
64 |
+
dv = self.get_sid(dv)
|
65 |
+
|
66 |
+
len_phone = phone.size()[0]
|
67 |
+
len_spec = spec.size()[-1]
|
68 |
+
# print(123,phone.shape,pitch.shape,spec.shape)
|
69 |
+
if len_phone != len_spec:
|
70 |
+
len_min = min(len_phone, len_spec)
|
71 |
+
# amor
|
72 |
+
len_wav = len_min * self.hop_length
|
73 |
+
|
74 |
+
spec = spec[:, :len_min]
|
75 |
+
wav = wav[:, :len_wav]
|
76 |
+
|
77 |
+
phone = phone[:len_min, :]
|
78 |
+
pitch = pitch[:len_min]
|
79 |
+
pitchf = pitchf[:len_min]
|
80 |
+
|
81 |
+
return (spec, wav, phone, pitch, pitchf, dv)
|
82 |
+
|
83 |
+
def get_labels(self, phone, pitch, pitchf):
|
84 |
+
phone = np.load(phone)
|
85 |
+
phone = np.repeat(phone, 2, axis=0)
|
86 |
+
pitch = np.load(pitch)
|
87 |
+
pitchf = np.load(pitchf)
|
88 |
+
n_num = min(phone.shape[0], 900) # DistributedBucketSampler
|
89 |
+
# print(234,phone.shape,pitch.shape)
|
90 |
+
phone = phone[:n_num, :]
|
91 |
+
pitch = pitch[:n_num]
|
92 |
+
pitchf = pitchf[:n_num]
|
93 |
+
phone = torch.FloatTensor(phone)
|
94 |
+
pitch = torch.LongTensor(pitch)
|
95 |
+
pitchf = torch.FloatTensor(pitchf)
|
96 |
+
return phone, pitch, pitchf
|
97 |
+
|
98 |
+
def get_audio(self, filename):
|
99 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
100 |
+
if sampling_rate != self.sampling_rate:
|
101 |
+
raise ValueError(
|
102 |
+
"{} SR doesn't match target {} SR".format(
|
103 |
+
sampling_rate, self.sampling_rate
|
104 |
+
)
|
105 |
+
)
|
106 |
+
audio_norm = audio
|
107 |
+
# audio_norm = audio / self.max_wav_value
|
108 |
+
# audio_norm = audio / np.abs(audio).max()
|
109 |
+
|
110 |
+
audio_norm = audio_norm.unsqueeze(0)
|
111 |
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
112 |
+
if os.path.exists(spec_filename):
|
113 |
+
try:
|
114 |
+
spec = torch.load(spec_filename)
|
115 |
+
except:
|
116 |
+
logger.warning("%s %s", spec_filename, traceback.format_exc())
|
117 |
+
spec = spectrogram_torch(
|
118 |
+
audio_norm,
|
119 |
+
self.filter_length,
|
120 |
+
self.sampling_rate,
|
121 |
+
self.hop_length,
|
122 |
+
self.win_length,
|
123 |
+
center=False,
|
124 |
+
)
|
125 |
+
spec = torch.squeeze(spec, 0)
|
126 |
+
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
127 |
+
else:
|
128 |
+
spec = spectrogram_torch(
|
129 |
+
audio_norm,
|
130 |
+
self.filter_length,
|
131 |
+
self.sampling_rate,
|
132 |
+
self.hop_length,
|
133 |
+
self.win_length,
|
134 |
+
center=False,
|
135 |
+
)
|
136 |
+
spec = torch.squeeze(spec, 0)
|
137 |
+
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
138 |
+
return spec, audio_norm
|
139 |
+
|
140 |
+
def __getitem__(self, index):
|
141 |
+
return self.get_audio_text_pair(self.audiopaths_and_text[index])
|
142 |
+
|
143 |
+
def __len__(self):
|
144 |
+
return len(self.audiopaths_and_text)
|
145 |
+
|
146 |
+
|
147 |
+
class TextAudioCollateMultiNSFsid:
|
148 |
+
"""Zero-pads model inputs and targets"""
|
149 |
+
|
150 |
+
def __init__(self, return_ids=False):
|
151 |
+
self.return_ids = return_ids
|
152 |
+
|
153 |
+
def __call__(self, batch):
|
154 |
+
"""Collate's training batch from normalized text and aduio
|
155 |
+
PARAMS
|
156 |
+
------
|
157 |
+
batch: [text_normalized, spec_normalized, wav_normalized]
|
158 |
+
"""
|
159 |
+
# Right zero-pad all one-hot text sequences to max input length
|
160 |
+
_, ids_sorted_decreasing = torch.sort(
|
161 |
+
torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True
|
162 |
+
)
|
163 |
+
|
164 |
+
max_spec_len = max([x[0].size(1) for x in batch])
|
165 |
+
max_wave_len = max([x[1].size(1) for x in batch])
|
166 |
+
spec_lengths = torch.LongTensor(len(batch))
|
167 |
+
wave_lengths = torch.LongTensor(len(batch))
|
168 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len)
|
169 |
+
wave_padded = torch.FloatTensor(len(batch), 1, max_wave_len)
|
170 |
+
spec_padded.zero_()
|
171 |
+
wave_padded.zero_()
|
172 |
+
|
173 |
+
max_phone_len = max([x[2].size(0) for x in batch])
|
174 |
+
phone_lengths = torch.LongTensor(len(batch))
|
175 |
+
phone_padded = torch.FloatTensor(
|
176 |
+
len(batch), max_phone_len, batch[0][2].shape[1]
|
177 |
+
) # (spec, wav, phone, pitch)
|
178 |
+
pitch_padded = torch.LongTensor(len(batch), max_phone_len)
|
179 |
+
pitchf_padded = torch.FloatTensor(len(batch), max_phone_len)
|
180 |
+
phone_padded.zero_()
|
181 |
+
pitch_padded.zero_()
|
182 |
+
pitchf_padded.zero_()
|
183 |
+
# dv = torch.FloatTensor(len(batch), 256)#gin=256
|
184 |
+
sid = torch.LongTensor(len(batch))
|
185 |
+
|
186 |
+
for i in range(len(ids_sorted_decreasing)):
|
187 |
+
row = batch[ids_sorted_decreasing[i]]
|
188 |
+
|
189 |
+
spec = row[0]
|
190 |
+
spec_padded[i, :, : spec.size(1)] = spec
|
191 |
+
spec_lengths[i] = spec.size(1)
|
192 |
+
|
193 |
+
wave = row[1]
|
194 |
+
wave_padded[i, :, : wave.size(1)] = wave
|
195 |
+
wave_lengths[i] = wave.size(1)
|
196 |
+
|
197 |
+
phone = row[2]
|
198 |
+
phone_padded[i, : phone.size(0), :] = phone
|
199 |
+
phone_lengths[i] = phone.size(0)
|
200 |
+
|
201 |
+
pitch = row[3]
|
202 |
+
pitch_padded[i, : pitch.size(0)] = pitch
|
203 |
+
pitchf = row[4]
|
204 |
+
pitchf_padded[i, : pitchf.size(0)] = pitchf
|
205 |
+
|
206 |
+
# dv[i] = row[5]
|
207 |
+
sid[i] = row[5]
|
208 |
+
|
209 |
+
return (
|
210 |
+
phone_padded,
|
211 |
+
phone_lengths,
|
212 |
+
pitch_padded,
|
213 |
+
pitchf_padded,
|
214 |
+
spec_padded,
|
215 |
+
spec_lengths,
|
216 |
+
wave_padded,
|
217 |
+
wave_lengths,
|
218 |
+
# dv
|
219 |
+
sid,
|
220 |
+
)
|
221 |
+
|
222 |
+
|
223 |
+
class TextAudioLoader(torch.utils.data.Dataset):
|
224 |
+
"""
|
225 |
+
1) loads audio, text pairs
|
226 |
+
2) normalizes text and converts them to sequences of integers
|
227 |
+
3) computes spectrograms from audio files.
|
228 |
+
"""
|
229 |
+
|
230 |
+
def __init__(self, audiopaths_and_text, hparams):
|
231 |
+
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
|
232 |
+
self.max_wav_value = hparams.max_wav_value
|
233 |
+
self.sampling_rate = hparams.sampling_rate
|
234 |
+
self.filter_length = hparams.filter_length
|
235 |
+
self.hop_length = hparams.hop_length
|
236 |
+
self.win_length = hparams.win_length
|
237 |
+
self.sampling_rate = hparams.sampling_rate
|
238 |
+
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
239 |
+
self.max_text_len = getattr(hparams, "max_text_len", 5000)
|
240 |
+
self._filter()
|
241 |
+
|
242 |
+
def _filter(self):
|
243 |
+
"""
|
244 |
+
Filter text & store spec lengths
|
245 |
+
"""
|
246 |
+
# Store spectrogram lengths for Bucketing
|
247 |
+
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
248 |
+
# spec_length = wav_length // hop_length
|
249 |
+
audiopaths_and_text_new = []
|
250 |
+
lengths = []
|
251 |
+
for audiopath, text, dv in self.audiopaths_and_text:
|
252 |
+
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
253 |
+
audiopaths_and_text_new.append([audiopath, text, dv])
|
254 |
+
lengths.append(os.path.getsize(audiopath) // (3 * self.hop_length))
|
255 |
+
self.audiopaths_and_text = audiopaths_and_text_new
|
256 |
+
self.lengths = lengths
|
257 |
+
|
258 |
+
def get_sid(self, sid):
|
259 |
+
sid = torch.LongTensor([int(sid)])
|
260 |
+
return sid
|
261 |
+
|
262 |
+
def get_audio_text_pair(self, audiopath_and_text):
|
263 |
+
# separate filename and text
|
264 |
+
file = audiopath_and_text[0]
|
265 |
+
phone = audiopath_and_text[1]
|
266 |
+
dv = audiopath_and_text[2]
|
267 |
+
|
268 |
+
phone = self.get_labels(phone)
|
269 |
+
spec, wav = self.get_audio(file)
|
270 |
+
dv = self.get_sid(dv)
|
271 |
+
|
272 |
+
len_phone = phone.size()[0]
|
273 |
+
len_spec = spec.size()[-1]
|
274 |
+
if len_phone != len_spec:
|
275 |
+
len_min = min(len_phone, len_spec)
|
276 |
+
len_wav = len_min * self.hop_length
|
277 |
+
spec = spec[:, :len_min]
|
278 |
+
wav = wav[:, :len_wav]
|
279 |
+
phone = phone[:len_min, :]
|
280 |
+
return (spec, wav, phone, dv)
|
281 |
+
|
282 |
+
def get_labels(self, phone):
|
283 |
+
phone = np.load(phone)
|
284 |
+
phone = np.repeat(phone, 2, axis=0)
|
285 |
+
n_num = min(phone.shape[0], 900) # DistributedBucketSampler
|
286 |
+
phone = phone[:n_num, :]
|
287 |
+
phone = torch.FloatTensor(phone)
|
288 |
+
return phone
|
289 |
+
|
290 |
+
def get_audio(self, filename):
|
291 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
292 |
+
if sampling_rate != self.sampling_rate:
|
293 |
+
raise ValueError(
|
294 |
+
"{} SR doesn't match target {} SR".format(
|
295 |
+
sampling_rate, self.sampling_rate
|
296 |
+
)
|
297 |
+
)
|
298 |
+
audio_norm = audio
|
299 |
+
# audio_norm = audio / self.max_wav_value
|
300 |
+
# audio_norm = audio / np.abs(audio).max()
|
301 |
+
|
302 |
+
audio_norm = audio_norm.unsqueeze(0)
|
303 |
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
304 |
+
if os.path.exists(spec_filename):
|
305 |
+
try:
|
306 |
+
spec = torch.load(spec_filename)
|
307 |
+
except:
|
308 |
+
logger.warning("%s %s", spec_filename, traceback.format_exc())
|
309 |
+
spec = spectrogram_torch(
|
310 |
+
audio_norm,
|
311 |
+
self.filter_length,
|
312 |
+
self.sampling_rate,
|
313 |
+
self.hop_length,
|
314 |
+
self.win_length,
|
315 |
+
center=False,
|
316 |
+
)
|
317 |
+
spec = torch.squeeze(spec, 0)
|
318 |
+
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
319 |
+
else:
|
320 |
+
spec = spectrogram_torch(
|
321 |
+
audio_norm,
|
322 |
+
self.filter_length,
|
323 |
+
self.sampling_rate,
|
324 |
+
self.hop_length,
|
325 |
+
self.win_length,
|
326 |
+
center=False,
|
327 |
+
)
|
328 |
+
spec = torch.squeeze(spec, 0)
|
329 |
+
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
330 |
+
return spec, audio_norm
|
331 |
+
|
332 |
+
def __getitem__(self, index):
|
333 |
+
return self.get_audio_text_pair(self.audiopaths_and_text[index])
|
334 |
+
|
335 |
+
def __len__(self):
|
336 |
+
return len(self.audiopaths_and_text)
|
337 |
+
|
338 |
+
|
339 |
+
class TextAudioCollate:
|
340 |
+
"""Zero-pads model inputs and targets"""
|
341 |
+
|
342 |
+
def __init__(self, return_ids=False):
|
343 |
+
self.return_ids = return_ids
|
344 |
+
|
345 |
+
def __call__(self, batch):
|
346 |
+
"""Collate's training batch from normalized text and aduio
|
347 |
+
PARAMS
|
348 |
+
------
|
349 |
+
batch: [text_normalized, spec_normalized, wav_normalized]
|
350 |
+
"""
|
351 |
+
# Right zero-pad all one-hot text sequences to max input length
|
352 |
+
_, ids_sorted_decreasing = torch.sort(
|
353 |
+
torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True
|
354 |
+
)
|
355 |
+
|
356 |
+
max_spec_len = max([x[0].size(1) for x in batch])
|
357 |
+
max_wave_len = max([x[1].size(1) for x in batch])
|
358 |
+
spec_lengths = torch.LongTensor(len(batch))
|
359 |
+
wave_lengths = torch.LongTensor(len(batch))
|
360 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len)
|
361 |
+
wave_padded = torch.FloatTensor(len(batch), 1, max_wave_len)
|
362 |
+
spec_padded.zero_()
|
363 |
+
wave_padded.zero_()
|
364 |
+
|
365 |
+
max_phone_len = max([x[2].size(0) for x in batch])
|
366 |
+
phone_lengths = torch.LongTensor(len(batch))
|
367 |
+
phone_padded = torch.FloatTensor(
|
368 |
+
len(batch), max_phone_len, batch[0][2].shape[1]
|
369 |
+
)
|
370 |
+
phone_padded.zero_()
|
371 |
+
sid = torch.LongTensor(len(batch))
|
372 |
+
|
373 |
+
for i in range(len(ids_sorted_decreasing)):
|
374 |
+
row = batch[ids_sorted_decreasing[i]]
|
375 |
+
|
376 |
+
spec = row[0]
|
377 |
+
spec_padded[i, :, : spec.size(1)] = spec
|
378 |
+
spec_lengths[i] = spec.size(1)
|
379 |
+
|
380 |
+
wave = row[1]
|
381 |
+
wave_padded[i, :, : wave.size(1)] = wave
|
382 |
+
wave_lengths[i] = wave.size(1)
|
383 |
+
|
384 |
+
phone = row[2]
|
385 |
+
phone_padded[i, : phone.size(0), :] = phone
|
386 |
+
phone_lengths[i] = phone.size(0)
|
387 |
+
|
388 |
+
sid[i] = row[3]
|
389 |
+
|
390 |
+
return (
|
391 |
+
phone_padded,
|
392 |
+
phone_lengths,
|
393 |
+
spec_padded,
|
394 |
+
spec_lengths,
|
395 |
+
wave_padded,
|
396 |
+
wave_lengths,
|
397 |
+
sid,
|
398 |
+
)
|
399 |
+
|
400 |
+
|
401 |
+
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
402 |
+
"""
|
403 |
+
Maintain similar input lengths in a batch.
|
404 |
+
Length groups are specified by boundaries.
|
405 |
+
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
406 |
+
|
407 |
+
It removes samples which are not included in the boundaries.
|
408 |
+
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
409 |
+
"""
|
410 |
+
|
411 |
+
def __init__(
|
412 |
+
self,
|
413 |
+
dataset,
|
414 |
+
batch_size,
|
415 |
+
boundaries,
|
416 |
+
num_replicas=None,
|
417 |
+
rank=None,
|
418 |
+
shuffle=True,
|
419 |
+
):
|
420 |
+
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
421 |
+
self.lengths = dataset.lengths
|
422 |
+
self.batch_size = batch_size
|
423 |
+
self.boundaries = boundaries
|
424 |
+
|
425 |
+
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
426 |
+
self.total_size = sum(self.num_samples_per_bucket)
|
427 |
+
self.num_samples = self.total_size // self.num_replicas
|
428 |
+
|
429 |
+
def _create_buckets(self):
|
430 |
+
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
431 |
+
for i in range(len(self.lengths)):
|
432 |
+
length = self.lengths[i]
|
433 |
+
idx_bucket = self._bisect(length)
|
434 |
+
if idx_bucket != -1:
|
435 |
+
buckets[idx_bucket].append(i)
|
436 |
+
|
437 |
+
for i in range(len(buckets) - 1, -1, -1): #
|
438 |
+
if len(buckets[i]) == 0:
|
439 |
+
buckets.pop(i)
|
440 |
+
self.boundaries.pop(i + 1)
|
441 |
+
|
442 |
+
num_samples_per_bucket = []
|
443 |
+
for i in range(len(buckets)):
|
444 |
+
len_bucket = len(buckets[i])
|
445 |
+
total_batch_size = self.num_replicas * self.batch_size
|
446 |
+
rem = (
|
447 |
+
total_batch_size - (len_bucket % total_batch_size)
|
448 |
+
) % total_batch_size
|
449 |
+
num_samples_per_bucket.append(len_bucket + rem)
|
450 |
+
return buckets, num_samples_per_bucket
|
451 |
+
|
452 |
+
def __iter__(self):
|
453 |
+
# deterministically shuffle based on epoch
|
454 |
+
g = torch.Generator()
|
455 |
+
g.manual_seed(self.epoch)
|
456 |
+
|
457 |
+
indices = []
|
458 |
+
if self.shuffle:
|
459 |
+
for bucket in self.buckets:
|
460 |
+
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
461 |
+
else:
|
462 |
+
for bucket in self.buckets:
|
463 |
+
indices.append(list(range(len(bucket))))
|
464 |
+
|
465 |
+
batches = []
|
466 |
+
for i in range(len(self.buckets)):
|
467 |
+
bucket = self.buckets[i]
|
468 |
+
len_bucket = len(bucket)
|
469 |
+
ids_bucket = indices[i]
|
470 |
+
num_samples_bucket = self.num_samples_per_bucket[i]
|
471 |
+
|
472 |
+
# add extra samples to make it evenly divisible
|
473 |
+
rem = num_samples_bucket - len_bucket
|
474 |
+
ids_bucket = (
|
475 |
+
ids_bucket
|
476 |
+
+ ids_bucket * (rem // len_bucket)
|
477 |
+
+ ids_bucket[: (rem % len_bucket)]
|
478 |
+
)
|
479 |
+
|
480 |
+
# subsample
|
481 |
+
ids_bucket = ids_bucket[self.rank :: self.num_replicas]
|
482 |
+
|
483 |
+
# batching
|
484 |
+
for j in range(len(ids_bucket) // self.batch_size):
|
485 |
+
batch = [
|
486 |
+
bucket[idx]
|
487 |
+
for idx in ids_bucket[
|
488 |
+
j * self.batch_size : (j + 1) * self.batch_size
|
489 |
+
]
|
490 |
+
]
|
491 |
+
batches.append(batch)
|
492 |
+
|
493 |
+
if self.shuffle:
|
494 |
+
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
495 |
+
batches = [batches[i] for i in batch_ids]
|
496 |
+
self.batches = batches
|
497 |
+
|
498 |
+
assert len(self.batches) * self.batch_size == self.num_samples
|
499 |
+
return iter(self.batches)
|
500 |
+
|
501 |
+
def _bisect(self, x, lo=0, hi=None):
|
502 |
+
if hi is None:
|
503 |
+
hi = len(self.boundaries) - 1
|
504 |
+
|
505 |
+
if hi > lo:
|
506 |
+
mid = (hi + lo) // 2
|
507 |
+
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
|
508 |
+
return mid
|
509 |
+
elif x <= self.boundaries[mid]:
|
510 |
+
return self._bisect(x, lo, mid)
|
511 |
+
else:
|
512 |
+
return self._bisect(x, mid + 1, hi)
|
513 |
+
else:
|
514 |
+
return -1
|
515 |
+
|
516 |
+
def __len__(self):
|
517 |
+
return self.num_samples // self.batch_size
|
infer/lib/train/losses.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def feature_loss(fmap_r, fmap_g):
|
5 |
+
loss = 0
|
6 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
7 |
+
for rl, gl in zip(dr, dg):
|
8 |
+
rl = rl.float().detach()
|
9 |
+
gl = gl.float()
|
10 |
+
loss += torch.mean(torch.abs(rl - gl))
|
11 |
+
|
12 |
+
return loss * 2
|
13 |
+
|
14 |
+
|
15 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
16 |
+
loss = 0
|
17 |
+
r_losses = []
|
18 |
+
g_losses = []
|
19 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
20 |
+
dr = dr.float()
|
21 |
+
dg = dg.float()
|
22 |
+
r_loss = torch.mean((1 - dr) ** 2)
|
23 |
+
g_loss = torch.mean(dg**2)
|
24 |
+
loss += r_loss + g_loss
|
25 |
+
r_losses.append(r_loss.item())
|
26 |
+
g_losses.append(g_loss.item())
|
27 |
+
|
28 |
+
return loss, r_losses, g_losses
|
29 |
+
|
30 |
+
|
31 |
+
def generator_loss(disc_outputs):
|
32 |
+
loss = 0
|
33 |
+
gen_losses = []
|
34 |
+
for dg in disc_outputs:
|
35 |
+
dg = dg.float()
|
36 |
+
l = torch.mean((1 - dg) ** 2)
|
37 |
+
gen_losses.append(l)
|
38 |
+
loss += l
|
39 |
+
|
40 |
+
return loss, gen_losses
|
41 |
+
|
42 |
+
|
43 |
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
44 |
+
"""
|
45 |
+
z_p, logs_q: [b, h, t_t]
|
46 |
+
m_p, logs_p: [b, h, t_t]
|
47 |
+
"""
|
48 |
+
z_p = z_p.float()
|
49 |
+
logs_q = logs_q.float()
|
50 |
+
m_p = m_p.float()
|
51 |
+
logs_p = logs_p.float()
|
52 |
+
z_mask = z_mask.float()
|
53 |
+
|
54 |
+
kl = logs_p - logs_q - 0.5
|
55 |
+
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
|
56 |
+
kl = torch.sum(kl * z_mask)
|
57 |
+
l = kl / torch.sum(z_mask)
|
58 |
+
return l
|
infer/lib/train/mel_processing.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.utils.data
|
3 |
+
from librosa.filters import mel as librosa_mel_fn
|
4 |
+
import logging
|
5 |
+
|
6 |
+
logger = logging.getLogger(__name__)
|
7 |
+
|
8 |
+
MAX_WAV_VALUE = 32768.0
|
9 |
+
|
10 |
+
|
11 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
12 |
+
"""
|
13 |
+
PARAMS
|
14 |
+
------
|
15 |
+
C: compression factor
|
16 |
+
"""
|
17 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
18 |
+
|
19 |
+
|
20 |
+
def dynamic_range_decompression_torch(x, C=1):
|
21 |
+
"""
|
22 |
+
PARAMS
|
23 |
+
------
|
24 |
+
C: compression factor used to compress
|
25 |
+
"""
|
26 |
+
return torch.exp(x) / C
|
27 |
+
|
28 |
+
|
29 |
+
def spectral_normalize_torch(magnitudes):
|
30 |
+
return dynamic_range_compression_torch(magnitudes)
|
31 |
+
|
32 |
+
|
33 |
+
def spectral_de_normalize_torch(magnitudes):
|
34 |
+
return dynamic_range_decompression_torch(magnitudes)
|
35 |
+
|
36 |
+
|
37 |
+
# Reusable banks
|
38 |
+
mel_basis = {}
|
39 |
+
hann_window = {}
|
40 |
+
|
41 |
+
|
42 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
43 |
+
"""Convert waveform into Linear-frequency Linear-amplitude spectrogram.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
y :: (B, T) - Audio waveforms
|
47 |
+
n_fft
|
48 |
+
sampling_rate
|
49 |
+
hop_size
|
50 |
+
win_size
|
51 |
+
center
|
52 |
+
Returns:
|
53 |
+
:: (B, Freq, Frame) - Linear-frequency Linear-amplitude spectrogram
|
54 |
+
"""
|
55 |
+
# Validation
|
56 |
+
if torch.min(y) < -1.07:
|
57 |
+
logger.debug("min value is %s", str(torch.min(y)))
|
58 |
+
if torch.max(y) > 1.07:
|
59 |
+
logger.debug("max value is %s", str(torch.max(y)))
|
60 |
+
|
61 |
+
# Window - Cache if needed
|
62 |
+
global hann_window
|
63 |
+
dtype_device = str(y.dtype) + "_" + str(y.device)
|
64 |
+
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
65 |
+
if wnsize_dtype_device not in hann_window:
|
66 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
67 |
+
dtype=y.dtype, device=y.device
|
68 |
+
)
|
69 |
+
|
70 |
+
# Padding
|
71 |
+
y = torch.nn.functional.pad(
|
72 |
+
y.unsqueeze(1),
|
73 |
+
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
74 |
+
mode="reflect",
|
75 |
+
)
|
76 |
+
y = y.squeeze(1)
|
77 |
+
|
78 |
+
# Complex Spectrogram :: (B, T) -> (B, Freq, Frame, RealComplex=2)
|
79 |
+
spec = torch.stft(
|
80 |
+
y,
|
81 |
+
n_fft,
|
82 |
+
hop_length=hop_size,
|
83 |
+
win_length=win_size,
|
84 |
+
window=hann_window[wnsize_dtype_device],
|
85 |
+
center=center,
|
86 |
+
pad_mode="reflect",
|
87 |
+
normalized=False,
|
88 |
+
onesided=True,
|
89 |
+
return_complex=False,
|
90 |
+
)
|
91 |
+
|
92 |
+
# Linear-frequency Linear-amplitude spectrogram :: (B, Freq, Frame, RealComplex=2) -> (B, Freq, Frame)
|
93 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
94 |
+
return spec
|
95 |
+
|
96 |
+
|
97 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
98 |
+
# MelBasis - Cache if needed
|
99 |
+
global mel_basis
|
100 |
+
dtype_device = str(spec.dtype) + "_" + str(spec.device)
|
101 |
+
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
102 |
+
if fmax_dtype_device not in mel_basis:
|
103 |
+
mel = librosa_mel_fn(
|
104 |
+
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
|
105 |
+
)
|
106 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
107 |
+
dtype=spec.dtype, device=spec.device
|
108 |
+
)
|
109 |
+
|
110 |
+
# Mel-frequency Log-amplitude spectrogram :: (B, Freq=num_mels, Frame)
|
111 |
+
melspec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
112 |
+
melspec = spectral_normalize_torch(melspec)
|
113 |
+
return melspec
|
114 |
+
|
115 |
+
|
116 |
+
def mel_spectrogram_torch(
|
117 |
+
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
|
118 |
+
):
|
119 |
+
"""Convert waveform into Mel-frequency Log-amplitude spectrogram.
|
120 |
+
|
121 |
+
Args:
|
122 |
+
y :: (B, T) - Waveforms
|
123 |
+
Returns:
|
124 |
+
melspec :: (B, Freq, Frame) - Mel-frequency Log-amplitude spectrogram
|
125 |
+
"""
|
126 |
+
# Linear-frequency Linear-amplitude spectrogram :: (B, T) -> (B, Freq, Frame)
|
127 |
+
spec = spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center)
|
128 |
+
|
129 |
+
# Mel-frequency Log-amplitude spectrogram :: (B, Freq, Frame) -> (B, Freq=num_mels, Frame)
|
130 |
+
melspec = spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax)
|
131 |
+
|
132 |
+
return melspec
|
infer/lib/train/process_ckpt.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import traceback
|
4 |
+
from collections import OrderedDict
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from i18n.i18n import I18nAuto
|
9 |
+
|
10 |
+
i18n = I18nAuto()
|
11 |
+
|
12 |
+
|
13 |
+
def savee(ckpt, sr, if_f0, name, epoch, version, hps):
|
14 |
+
try:
|
15 |
+
opt = OrderedDict()
|
16 |
+
opt["weight"] = {}
|
17 |
+
for key in ckpt.keys():
|
18 |
+
if "enc_q" in key:
|
19 |
+
continue
|
20 |
+
opt["weight"][key] = ckpt[key].half()
|
21 |
+
opt["config"] = [
|
22 |
+
hps.data.filter_length // 2 + 1,
|
23 |
+
32,
|
24 |
+
hps.model.inter_channels,
|
25 |
+
hps.model.hidden_channels,
|
26 |
+
hps.model.filter_channels,
|
27 |
+
hps.model.n_heads,
|
28 |
+
hps.model.n_layers,
|
29 |
+
hps.model.kernel_size,
|
30 |
+
hps.model.p_dropout,
|
31 |
+
hps.model.resblock,
|
32 |
+
hps.model.resblock_kernel_sizes,
|
33 |
+
hps.model.resblock_dilation_sizes,
|
34 |
+
hps.model.upsample_rates,
|
35 |
+
hps.model.upsample_initial_channel,
|
36 |
+
hps.model.upsample_kernel_sizes,
|
37 |
+
hps.model.spk_embed_dim,
|
38 |
+
hps.model.gin_channels,
|
39 |
+
hps.data.sampling_rate,
|
40 |
+
]
|
41 |
+
opt["info"] = "%sepoch" % epoch
|
42 |
+
opt["sr"] = sr
|
43 |
+
opt["f0"] = if_f0
|
44 |
+
opt["version"] = version
|
45 |
+
torch.save(opt, "assets/weights/%s.pth" % name)
|
46 |
+
return "Success."
|
47 |
+
except:
|
48 |
+
return traceback.format_exc()
|
49 |
+
|
50 |
+
|
51 |
+
def show_info(path):
|
52 |
+
try:
|
53 |
+
a = torch.load(path, map_location="cpu")
|
54 |
+
return "模型信息:%s\n采样率:%s\n模型是否输入音高引导:%s\n版本:%s" % (
|
55 |
+
a.get("info", "None"),
|
56 |
+
a.get("sr", "None"),
|
57 |
+
a.get("f0", "None"),
|
58 |
+
a.get("version", "None"),
|
59 |
+
)
|
60 |
+
except:
|
61 |
+
return traceback.format_exc()
|
62 |
+
|
63 |
+
|
64 |
+
def extract_small_model(path, name, sr, if_f0, info, version):
|
65 |
+
try:
|
66 |
+
ckpt = torch.load(path, map_location="cpu")
|
67 |
+
if "model" in ckpt:
|
68 |
+
ckpt = ckpt["model"]
|
69 |
+
opt = OrderedDict()
|
70 |
+
opt["weight"] = {}
|
71 |
+
for key in ckpt.keys():
|
72 |
+
if "enc_q" in key:
|
73 |
+
continue
|
74 |
+
opt["weight"][key] = ckpt[key].half()
|
75 |
+
if sr == "40k":
|
76 |
+
opt["config"] = [
|
77 |
+
1025,
|
78 |
+
32,
|
79 |
+
192,
|
80 |
+
192,
|
81 |
+
768,
|
82 |
+
2,
|
83 |
+
6,
|
84 |
+
3,
|
85 |
+
0,
|
86 |
+
"1",
|
87 |
+
[3, 7, 11],
|
88 |
+
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
89 |
+
[10, 10, 2, 2],
|
90 |
+
512,
|
91 |
+
[16, 16, 4, 4],
|
92 |
+
109,
|
93 |
+
256,
|
94 |
+
40000,
|
95 |
+
]
|
96 |
+
elif sr == "48k":
|
97 |
+
if version == "v1":
|
98 |
+
opt["config"] = [
|
99 |
+
1025,
|
100 |
+
32,
|
101 |
+
192,
|
102 |
+
192,
|
103 |
+
768,
|
104 |
+
2,
|
105 |
+
6,
|
106 |
+
3,
|
107 |
+
0,
|
108 |
+
"1",
|
109 |
+
[3, 7, 11],
|
110 |
+
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
111 |
+
[10, 6, 2, 2, 2],
|
112 |
+
512,
|
113 |
+
[16, 16, 4, 4, 4],
|
114 |
+
109,
|
115 |
+
256,
|
116 |
+
48000,
|
117 |
+
]
|
118 |
+
else:
|
119 |
+
opt["config"] = [
|
120 |
+
1025,
|
121 |
+
32,
|
122 |
+
192,
|
123 |
+
192,
|
124 |
+
768,
|
125 |
+
2,
|
126 |
+
6,
|
127 |
+
3,
|
128 |
+
0,
|
129 |
+
"1",
|
130 |
+
[3, 7, 11],
|
131 |
+
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
132 |
+
[12, 10, 2, 2],
|
133 |
+
512,
|
134 |
+
[24, 20, 4, 4],
|
135 |
+
109,
|
136 |
+
256,
|
137 |
+
48000,
|
138 |
+
]
|
139 |
+
elif sr == "32k":
|
140 |
+
if version == "v1":
|
141 |
+
opt["config"] = [
|
142 |
+
513,
|
143 |
+
32,
|
144 |
+
192,
|
145 |
+
192,
|
146 |
+
768,
|
147 |
+
2,
|
148 |
+
6,
|
149 |
+
3,
|
150 |
+
0,
|
151 |
+
"1",
|
152 |
+
[3, 7, 11],
|
153 |
+
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
154 |
+
[10, 4, 2, 2, 2],
|
155 |
+
512,
|
156 |
+
[16, 16, 4, 4, 4],
|
157 |
+
109,
|
158 |
+
256,
|
159 |
+
32000,
|
160 |
+
]
|
161 |
+
else:
|
162 |
+
opt["config"] = [
|
163 |
+
513,
|
164 |
+
32,
|
165 |
+
192,
|
166 |
+
192,
|
167 |
+
768,
|
168 |
+
2,
|
169 |
+
6,
|
170 |
+
3,
|
171 |
+
0,
|
172 |
+
"1",
|
173 |
+
[3, 7, 11],
|
174 |
+
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
175 |
+
[10, 8, 2, 2],
|
176 |
+
512,
|
177 |
+
[20, 16, 4, 4],
|
178 |
+
109,
|
179 |
+
256,
|
180 |
+
32000,
|
181 |
+
]
|
182 |
+
if info == "":
|
183 |
+
info = "Extracted model."
|
184 |
+
opt["info"] = info
|
185 |
+
opt["version"] = version
|
186 |
+
opt["sr"] = sr
|
187 |
+
opt["f0"] = int(if_f0)
|
188 |
+
torch.save(opt, "assets/weights/%s.pth" % name)
|
189 |
+
return "Success."
|
190 |
+
except:
|
191 |
+
return traceback.format_exc()
|
192 |
+
|
193 |
+
|
194 |
+
def change_info(path, info, name):
|
195 |
+
try:
|
196 |
+
ckpt = torch.load(path, map_location="cpu")
|
197 |
+
ckpt["info"] = info
|
198 |
+
if name == "":
|
199 |
+
name = os.path.basename(path)
|
200 |
+
torch.save(ckpt, "assets/weights/%s" % name)
|
201 |
+
return "Success."
|
202 |
+
except:
|
203 |
+
return traceback.format_exc()
|
204 |
+
|
205 |
+
|
206 |
+
def merge(path1, path2, alpha1, sr, f0, info, name, version):
|
207 |
+
try:
|
208 |
+
|
209 |
+
def extract(ckpt):
|
210 |
+
a = ckpt["model"]
|
211 |
+
opt = OrderedDict()
|
212 |
+
opt["weight"] = {}
|
213 |
+
for key in a.keys():
|
214 |
+
if "enc_q" in key:
|
215 |
+
continue
|
216 |
+
opt["weight"][key] = a[key]
|
217 |
+
return opt
|
218 |
+
|
219 |
+
ckpt1 = torch.load(path1, map_location="cpu")
|
220 |
+
ckpt2 = torch.load(path2, map_location="cpu")
|
221 |
+
cfg = ckpt1["config"]
|
222 |
+
if "model" in ckpt1:
|
223 |
+
ckpt1 = extract(ckpt1)
|
224 |
+
else:
|
225 |
+
ckpt1 = ckpt1["weight"]
|
226 |
+
if "model" in ckpt2:
|
227 |
+
ckpt2 = extract(ckpt2)
|
228 |
+
else:
|
229 |
+
ckpt2 = ckpt2["weight"]
|
230 |
+
if sorted(list(ckpt1.keys())) != sorted(list(ckpt2.keys())):
|
231 |
+
return "Fail to merge the models. The model architectures are not the same."
|
232 |
+
opt = OrderedDict()
|
233 |
+
opt["weight"] = {}
|
234 |
+
for key in ckpt1.keys():
|
235 |
+
# try:
|
236 |
+
if key == "emb_g.weight" and ckpt1[key].shape != ckpt2[key].shape:
|
237 |
+
min_shape0 = min(ckpt1[key].shape[0], ckpt2[key].shape[0])
|
238 |
+
opt["weight"][key] = (
|
239 |
+
alpha1 * (ckpt1[key][:min_shape0].float())
|
240 |
+
+ (1 - alpha1) * (ckpt2[key][:min_shape0].float())
|
241 |
+
).half()
|
242 |
+
else:
|
243 |
+
opt["weight"][key] = (
|
244 |
+
alpha1 * (ckpt1[key].float()) + (1 - alpha1) * (ckpt2[key].float())
|
245 |
+
).half()
|
246 |
+
# except:
|
247 |
+
# pdb.set_trace()
|
248 |
+
opt["config"] = cfg
|
249 |
+
"""
|
250 |
+
if(sr=="40k"):opt["config"] = [1025, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 10, 2, 2], 512, [16, 16, 4, 4,4], 109, 256, 40000]
|
251 |
+
elif(sr=="48k"):opt["config"] = [1025, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10,6,2,2,2], 512, [16, 16, 4, 4], 109, 256, 48000]
|
252 |
+
elif(sr=="32k"):opt["config"] = [513, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 4, 2, 2, 2], 512, [16, 16, 4, 4,4], 109, 256, 32000]
|
253 |
+
"""
|
254 |
+
opt["sr"] = sr
|
255 |
+
opt["f0"] = 1 if f0 == i18n("是") else 0
|
256 |
+
opt["version"] = version
|
257 |
+
opt["info"] = info
|
258 |
+
torch.save(opt, "assets/weights/%s.pth" % name)
|
259 |
+
return "Success."
|
260 |
+
except:
|
261 |
+
return traceback.format_exc()
|
infer/lib/train/utils.py
ADDED
@@ -0,0 +1,478 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import glob
|
3 |
+
import json
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
import subprocess
|
7 |
+
import sys
|
8 |
+
import shutil
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
from scipy.io.wavfile import read
|
13 |
+
|
14 |
+
MATPLOTLIB_FLAG = False
|
15 |
+
|
16 |
+
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
17 |
+
logger = logging
|
18 |
+
|
19 |
+
|
20 |
+
def load_checkpoint_d(checkpoint_path, combd, sbd, optimizer=None, load_opt=1):
|
21 |
+
assert os.path.isfile(checkpoint_path)
|
22 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
23 |
+
|
24 |
+
##################
|
25 |
+
def go(model, bkey):
|
26 |
+
saved_state_dict = checkpoint_dict[bkey]
|
27 |
+
if hasattr(model, "module"):
|
28 |
+
state_dict = model.module.state_dict()
|
29 |
+
else:
|
30 |
+
state_dict = model.state_dict()
|
31 |
+
new_state_dict = {}
|
32 |
+
for k, v in state_dict.items(): # 模型需要的shape
|
33 |
+
try:
|
34 |
+
new_state_dict[k] = saved_state_dict[k]
|
35 |
+
if saved_state_dict[k].shape != state_dict[k].shape:
|
36 |
+
logger.warning(
|
37 |
+
"shape-%s-mismatch. need: %s, get: %s",
|
38 |
+
k,
|
39 |
+
state_dict[k].shape,
|
40 |
+
saved_state_dict[k].shape,
|
41 |
+
) #
|
42 |
+
raise KeyError
|
43 |
+
except:
|
44 |
+
# logger.info(traceback.format_exc())
|
45 |
+
logger.info("%s is not in the checkpoint", k) # pretrain缺失的
|
46 |
+
new_state_dict[k] = v # 模型自带的随机值
|
47 |
+
if hasattr(model, "module"):
|
48 |
+
model.module.load_state_dict(new_state_dict, strict=False)
|
49 |
+
else:
|
50 |
+
model.load_state_dict(new_state_dict, strict=False)
|
51 |
+
return model
|
52 |
+
|
53 |
+
go(combd, "combd")
|
54 |
+
model = go(sbd, "sbd")
|
55 |
+
#############
|
56 |
+
logger.info("Loaded model weights")
|
57 |
+
|
58 |
+
iteration = checkpoint_dict["iteration"]
|
59 |
+
learning_rate = checkpoint_dict["learning_rate"]
|
60 |
+
if (
|
61 |
+
optimizer is not None and load_opt == 1
|
62 |
+
): ###加载不了,如果是空的的话,重新初始化,可能还会影响lr时间表的更新,因此在train文件最外围catch
|
63 |
+
# try:
|
64 |
+
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
65 |
+
# except:
|
66 |
+
# traceback.print_exc()
|
67 |
+
logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, iteration))
|
68 |
+
return model, optimizer, learning_rate, iteration
|
69 |
+
|
70 |
+
|
71 |
+
# def load_checkpoint(checkpoint_path, model, optimizer=None):
|
72 |
+
# assert os.path.isfile(checkpoint_path)
|
73 |
+
# checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
74 |
+
# iteration = checkpoint_dict['iteration']
|
75 |
+
# learning_rate = checkpoint_dict['learning_rate']
|
76 |
+
# if optimizer is not None:
|
77 |
+
# optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
78 |
+
# # print(1111)
|
79 |
+
# saved_state_dict = checkpoint_dict['model']
|
80 |
+
# # print(1111)
|
81 |
+
#
|
82 |
+
# if hasattr(model, 'module'):
|
83 |
+
# state_dict = model.module.state_dict()
|
84 |
+
# else:
|
85 |
+
# state_dict = model.state_dict()
|
86 |
+
# new_state_dict= {}
|
87 |
+
# for k, v in state_dict.items():
|
88 |
+
# try:
|
89 |
+
# new_state_dict[k] = saved_state_dict[k]
|
90 |
+
# except:
|
91 |
+
# logger.info("%s is not in the checkpoint" % k)
|
92 |
+
# new_state_dict[k] = v
|
93 |
+
# if hasattr(model, 'module'):
|
94 |
+
# model.module.load_state_dict(new_state_dict)
|
95 |
+
# else:
|
96 |
+
# model.load_state_dict(new_state_dict)
|
97 |
+
# logger.info("Loaded checkpoint '{}' (epoch {})" .format(
|
98 |
+
# checkpoint_path, iteration))
|
99 |
+
# return model, optimizer, learning_rate, iteration
|
100 |
+
def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1):
|
101 |
+
assert os.path.isfile(checkpoint_path)
|
102 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
103 |
+
|
104 |
+
saved_state_dict = checkpoint_dict["model"]
|
105 |
+
if hasattr(model, "module"):
|
106 |
+
state_dict = model.module.state_dict()
|
107 |
+
else:
|
108 |
+
state_dict = model.state_dict()
|
109 |
+
new_state_dict = {}
|
110 |
+
for k, v in state_dict.items(): # 模型需要的shape
|
111 |
+
try:
|
112 |
+
new_state_dict[k] = saved_state_dict[k]
|
113 |
+
if saved_state_dict[k].shape != state_dict[k].shape:
|
114 |
+
logger.warning(
|
115 |
+
"shape-%s-mismatch|need-%s|get-%s",
|
116 |
+
k,
|
117 |
+
state_dict[k].shape,
|
118 |
+
saved_state_dict[k].shape,
|
119 |
+
) #
|
120 |
+
raise KeyError
|
121 |
+
except:
|
122 |
+
# logger.info(traceback.format_exc())
|
123 |
+
logger.info("%s is not in the checkpoint", k) # pretrain缺失的
|
124 |
+
new_state_dict[k] = v # 模型自带的随机值
|
125 |
+
if hasattr(model, "module"):
|
126 |
+
model.module.load_state_dict(new_state_dict, strict=False)
|
127 |
+
else:
|
128 |
+
model.load_state_dict(new_state_dict, strict=False)
|
129 |
+
logger.info("Loaded model weights")
|
130 |
+
|
131 |
+
iteration = checkpoint_dict["iteration"]
|
132 |
+
learning_rate = checkpoint_dict["learning_rate"]
|
133 |
+
if (
|
134 |
+
optimizer is not None and load_opt == 1
|
135 |
+
): ###加载不了,如果是空的的话,重新初始化,可能还会影响lr时间表的更新,因此在train文件最外围catch
|
136 |
+
# try:
|
137 |
+
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
138 |
+
# except:
|
139 |
+
# traceback.print_exc()
|
140 |
+
logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, iteration))
|
141 |
+
return model, optimizer, learning_rate, iteration
|
142 |
+
|
143 |
+
|
144 |
+
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
145 |
+
logger.info(
|
146 |
+
"Saving model and optimizer state at epoch {} to {}".format(
|
147 |
+
iteration, checkpoint_path
|
148 |
+
)
|
149 |
+
)
|
150 |
+
if hasattr(model, "module"):
|
151 |
+
state_dict = model.module.state_dict()
|
152 |
+
else:
|
153 |
+
state_dict = model.state_dict()
|
154 |
+
torch.save(
|
155 |
+
{
|
156 |
+
"model": state_dict,
|
157 |
+
"iteration": iteration,
|
158 |
+
"optimizer": optimizer.state_dict(),
|
159 |
+
"learning_rate": learning_rate,
|
160 |
+
},
|
161 |
+
checkpoint_path,
|
162 |
+
)
|
163 |
+
|
164 |
+
|
165 |
+
def save_checkpoint_d(combd, sbd, optimizer, learning_rate, iteration, checkpoint_path):
|
166 |
+
logger.info(
|
167 |
+
"Saving model and optimizer state at epoch {} to {}".format(
|
168 |
+
iteration, checkpoint_path
|
169 |
+
)
|
170 |
+
)
|
171 |
+
if hasattr(combd, "module"):
|
172 |
+
state_dict_combd = combd.module.state_dict()
|
173 |
+
else:
|
174 |
+
state_dict_combd = combd.state_dict()
|
175 |
+
if hasattr(sbd, "module"):
|
176 |
+
state_dict_sbd = sbd.module.state_dict()
|
177 |
+
else:
|
178 |
+
state_dict_sbd = sbd.state_dict()
|
179 |
+
torch.save(
|
180 |
+
{
|
181 |
+
"combd": state_dict_combd,
|
182 |
+
"sbd": state_dict_sbd,
|
183 |
+
"iteration": iteration,
|
184 |
+
"optimizer": optimizer.state_dict(),
|
185 |
+
"learning_rate": learning_rate,
|
186 |
+
},
|
187 |
+
checkpoint_path,
|
188 |
+
)
|
189 |
+
|
190 |
+
|
191 |
+
def summarize(
|
192 |
+
writer,
|
193 |
+
global_step,
|
194 |
+
scalars={},
|
195 |
+
histograms={},
|
196 |
+
images={},
|
197 |
+
audios={},
|
198 |
+
audio_sampling_rate=22050,
|
199 |
+
):
|
200 |
+
for k, v in scalars.items():
|
201 |
+
writer.add_scalar(k, v, global_step)
|
202 |
+
for k, v in histograms.items():
|
203 |
+
writer.add_histogram(k, v, global_step)
|
204 |
+
for k, v in images.items():
|
205 |
+
writer.add_image(k, v, global_step, dataformats="HWC")
|
206 |
+
for k, v in audios.items():
|
207 |
+
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
208 |
+
|
209 |
+
|
210 |
+
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
211 |
+
f_list = glob.glob(os.path.join(dir_path, regex))
|
212 |
+
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
213 |
+
x = f_list[-1]
|
214 |
+
logger.debug(x)
|
215 |
+
return x
|
216 |
+
|
217 |
+
|
218 |
+
def plot_spectrogram_to_numpy(spectrogram):
|
219 |
+
global MATPLOTLIB_FLAG
|
220 |
+
if not MATPLOTLIB_FLAG:
|
221 |
+
import matplotlib
|
222 |
+
|
223 |
+
matplotlib.use("Agg")
|
224 |
+
MATPLOTLIB_FLAG = True
|
225 |
+
mpl_logger = logging.getLogger("matplotlib")
|
226 |
+
mpl_logger.setLevel(logging.WARNING)
|
227 |
+
import matplotlib.pylab as plt
|
228 |
+
import numpy as np
|
229 |
+
|
230 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
231 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
232 |
+
plt.colorbar(im, ax=ax)
|
233 |
+
plt.xlabel("Frames")
|
234 |
+
plt.ylabel("Channels")
|
235 |
+
plt.tight_layout()
|
236 |
+
|
237 |
+
fig.canvas.draw()
|
238 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
239 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
240 |
+
plt.close()
|
241 |
+
return data
|
242 |
+
|
243 |
+
|
244 |
+
def plot_alignment_to_numpy(alignment, info=None):
|
245 |
+
global MATPLOTLIB_FLAG
|
246 |
+
if not MATPLOTLIB_FLAG:
|
247 |
+
import matplotlib
|
248 |
+
|
249 |
+
matplotlib.use("Agg")
|
250 |
+
MATPLOTLIB_FLAG = True
|
251 |
+
mpl_logger = logging.getLogger("matplotlib")
|
252 |
+
mpl_logger.setLevel(logging.WARNING)
|
253 |
+
import matplotlib.pylab as plt
|
254 |
+
import numpy as np
|
255 |
+
|
256 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
257 |
+
im = ax.imshow(
|
258 |
+
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
259 |
+
)
|
260 |
+
fig.colorbar(im, ax=ax)
|
261 |
+
xlabel = "Decoder timestep"
|
262 |
+
if info is not None:
|
263 |
+
xlabel += "\n\n" + info
|
264 |
+
plt.xlabel(xlabel)
|
265 |
+
plt.ylabel("Encoder timestep")
|
266 |
+
plt.tight_layout()
|
267 |
+
|
268 |
+
fig.canvas.draw()
|
269 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
270 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
271 |
+
plt.close()
|
272 |
+
return data
|
273 |
+
|
274 |
+
|
275 |
+
def load_wav_to_torch(full_path):
|
276 |
+
sampling_rate, data = read(full_path)
|
277 |
+
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
278 |
+
|
279 |
+
|
280 |
+
def load_filepaths_and_text(filename, split="|"):
|
281 |
+
with open(filename, encoding="utf-8") as f:
|
282 |
+
filepaths_and_text = [line.strip().split(split) for line in f]
|
283 |
+
return filepaths_and_text
|
284 |
+
|
285 |
+
|
286 |
+
def get_hparams(init=True):
|
287 |
+
"""
|
288 |
+
todo:
|
289 |
+
结尾七人组:
|
290 |
+
保存频率、总epoch done
|
291 |
+
bs done
|
292 |
+
pretrainG、pretrainD done
|
293 |
+
卡号:os.en["CUDA_VISIBLE_DEVICES"] done
|
294 |
+
if_latest done
|
295 |
+
模型:if_f0 done
|
296 |
+
采样率:自动选择config done
|
297 |
+
是否缓存数据集进GPU:if_cache_data_in_gpu done
|
298 |
+
|
299 |
+
-m:
|
300 |
+
自动决定training_files路径,改掉train_nsf_load_pretrain.py里的hps.data.training_files done
|
301 |
+
-c不要了
|
302 |
+
"""
|
303 |
+
parser = argparse.ArgumentParser()
|
304 |
+
parser.add_argument(
|
305 |
+
"-se",
|
306 |
+
"--save_every_epoch",
|
307 |
+
type=int,
|
308 |
+
required=True,
|
309 |
+
help="checkpoint save frequency (epoch)",
|
310 |
+
)
|
311 |
+
parser.add_argument(
|
312 |
+
"-te", "--total_epoch", type=int, required=True, help="total_epoch"
|
313 |
+
)
|
314 |
+
parser.add_argument(
|
315 |
+
"-pg", "--pretrainG", type=str, default="", help="Pretrained Discriminator path"
|
316 |
+
)
|
317 |
+
parser.add_argument(
|
318 |
+
"-pd", "--pretrainD", type=str, default="", help="Pretrained Generator path"
|
319 |
+
)
|
320 |
+
parser.add_argument("-g", "--gpus", type=str, default="0", help="split by -")
|
321 |
+
parser.add_argument(
|
322 |
+
"-bs", "--batch_size", type=int, required=True, help="batch size"
|
323 |
+
)
|
324 |
+
parser.add_argument(
|
325 |
+
"-e", "--experiment_dir", type=str, required=True, help="experiment dir"
|
326 |
+
) # -m
|
327 |
+
parser.add_argument(
|
328 |
+
"-sr", "--sample_rate", type=str, required=True, help="sample rate, 32k/40k/48k"
|
329 |
+
)
|
330 |
+
parser.add_argument(
|
331 |
+
"-sw",
|
332 |
+
"--save_every_weights",
|
333 |
+
type=str,
|
334 |
+
default="0",
|
335 |
+
help="save the extracted model in weights directory when saving checkpoints",
|
336 |
+
)
|
337 |
+
parser.add_argument(
|
338 |
+
"-v", "--version", type=str, required=True, help="model version"
|
339 |
+
)
|
340 |
+
parser.add_argument(
|
341 |
+
"-f0",
|
342 |
+
"--if_f0",
|
343 |
+
type=int,
|
344 |
+
required=True,
|
345 |
+
help="use f0 as one of the inputs of the model, 1 or 0",
|
346 |
+
)
|
347 |
+
parser.add_argument(
|
348 |
+
"-l",
|
349 |
+
"--if_latest",
|
350 |
+
type=int,
|
351 |
+
required=True,
|
352 |
+
help="if only save the latest G/D pth file, 1 or 0",
|
353 |
+
)
|
354 |
+
parser.add_argument(
|
355 |
+
"-c",
|
356 |
+
"--if_cache_data_in_gpu",
|
357 |
+
type=int,
|
358 |
+
required=True,
|
359 |
+
help="if caching the dataset in GPU memory, 1 or 0",
|
360 |
+
)
|
361 |
+
|
362 |
+
args = parser.parse_args()
|
363 |
+
name = args.experiment_dir
|
364 |
+
experiment_dir = os.path.join("./logs", args.experiment_dir)
|
365 |
+
|
366 |
+
config_save_path = os.path.join(experiment_dir, "config.json")
|
367 |
+
with open(config_save_path, "r") as f:
|
368 |
+
config = json.load(f)
|
369 |
+
|
370 |
+
hparams = HParams(**config)
|
371 |
+
hparams.model_dir = hparams.experiment_dir = experiment_dir
|
372 |
+
hparams.save_every_epoch = args.save_every_epoch
|
373 |
+
hparams.name = name
|
374 |
+
hparams.total_epoch = args.total_epoch
|
375 |
+
hparams.pretrainG = args.pretrainG
|
376 |
+
hparams.pretrainD = args.pretrainD
|
377 |
+
hparams.version = args.version
|
378 |
+
hparams.gpus = args.gpus
|
379 |
+
hparams.train.batch_size = args.batch_size
|
380 |
+
hparams.sample_rate = args.sample_rate
|
381 |
+
hparams.if_f0 = args.if_f0
|
382 |
+
hparams.if_latest = args.if_latest
|
383 |
+
hparams.save_every_weights = args.save_every_weights
|
384 |
+
hparams.if_cache_data_in_gpu = args.if_cache_data_in_gpu
|
385 |
+
hparams.data.training_files = "%s/filelist.txt" % experiment_dir
|
386 |
+
return hparams
|
387 |
+
|
388 |
+
|
389 |
+
def get_hparams_from_dir(model_dir):
|
390 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
391 |
+
with open(config_save_path, "r") as f:
|
392 |
+
data = f.read()
|
393 |
+
config = json.loads(data)
|
394 |
+
|
395 |
+
hparams = HParams(**config)
|
396 |
+
hparams.model_dir = model_dir
|
397 |
+
return hparams
|
398 |
+
|
399 |
+
|
400 |
+
def get_hparams_from_file(config_path):
|
401 |
+
with open(config_path, "r") as f:
|
402 |
+
data = f.read()
|
403 |
+
config = json.loads(data)
|
404 |
+
|
405 |
+
hparams = HParams(**config)
|
406 |
+
return hparams
|
407 |
+
|
408 |
+
|
409 |
+
def check_git_hash(model_dir):
|
410 |
+
source_dir = os.path.dirname(os.path.realpath(__file__))
|
411 |
+
if not os.path.exists(os.path.join(source_dir, ".git")):
|
412 |
+
logger.warning(
|
413 |
+
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
414 |
+
source_dir
|
415 |
+
)
|
416 |
+
)
|
417 |
+
return
|
418 |
+
|
419 |
+
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
420 |
+
|
421 |
+
path = os.path.join(model_dir, "githash")
|
422 |
+
if os.path.exists(path):
|
423 |
+
saved_hash = open(path).read()
|
424 |
+
if saved_hash != cur_hash:
|
425 |
+
logger.warning(
|
426 |
+
"git hash values are different. {}(saved) != {}(current)".format(
|
427 |
+
saved_hash[:8], cur_hash[:8]
|
428 |
+
)
|
429 |
+
)
|
430 |
+
else:
|
431 |
+
open(path, "w").write(cur_hash)
|
432 |
+
|
433 |
+
|
434 |
+
def get_logger(model_dir, filename="train.log"):
|
435 |
+
global logger
|
436 |
+
logger = logging.getLogger(os.path.basename(model_dir))
|
437 |
+
logger.setLevel(logging.DEBUG)
|
438 |
+
|
439 |
+
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
440 |
+
if not os.path.exists(model_dir):
|
441 |
+
os.makedirs(model_dir)
|
442 |
+
h = logging.FileHandler(os.path.join(model_dir, filename))
|
443 |
+
h.setLevel(logging.DEBUG)
|
444 |
+
h.setFormatter(formatter)
|
445 |
+
logger.addHandler(h)
|
446 |
+
return logger
|
447 |
+
|
448 |
+
|
449 |
+
class HParams:
|
450 |
+
def __init__(self, **kwargs):
|
451 |
+
for k, v in kwargs.items():
|
452 |
+
if type(v) == dict:
|
453 |
+
v = HParams(**v)
|
454 |
+
self[k] = v
|
455 |
+
|
456 |
+
def keys(self):
|
457 |
+
return self.__dict__.keys()
|
458 |
+
|
459 |
+
def items(self):
|
460 |
+
return self.__dict__.items()
|
461 |
+
|
462 |
+
def values(self):
|
463 |
+
return self.__dict__.values()
|
464 |
+
|
465 |
+
def __len__(self):
|
466 |
+
return len(self.__dict__)
|
467 |
+
|
468 |
+
def __getitem__(self, key):
|
469 |
+
return getattr(self, key)
|
470 |
+
|
471 |
+
def __setitem__(self, key, value):
|
472 |
+
return setattr(self, key, value)
|
473 |
+
|
474 |
+
def __contains__(self, key):
|
475 |
+
return key in self.__dict__
|
476 |
+
|
477 |
+
def __repr__(self):
|
478 |
+
return self.__dict__.__repr__()
|
infer/lib/uvr5_pack/lib_v5/dataset.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.utils.data
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
from . import spec_utils
|
10 |
+
|
11 |
+
|
12 |
+
class VocalRemoverValidationSet(torch.utils.data.Dataset):
|
13 |
+
def __init__(self, patch_list):
|
14 |
+
self.patch_list = patch_list
|
15 |
+
|
16 |
+
def __len__(self):
|
17 |
+
return len(self.patch_list)
|
18 |
+
|
19 |
+
def __getitem__(self, idx):
|
20 |
+
path = self.patch_list[idx]
|
21 |
+
data = np.load(path)
|
22 |
+
|
23 |
+
X, y = data["X"], data["y"]
|
24 |
+
|
25 |
+
X_mag = np.abs(X)
|
26 |
+
y_mag = np.abs(y)
|
27 |
+
|
28 |
+
return X_mag, y_mag
|
29 |
+
|
30 |
+
|
31 |
+
def make_pair(mix_dir, inst_dir):
|
32 |
+
input_exts = [".wav", ".m4a", ".mp3", ".mp4", ".flac"]
|
33 |
+
|
34 |
+
X_list = sorted(
|
35 |
+
[
|
36 |
+
os.path.join(mix_dir, fname)
|
37 |
+
for fname in os.listdir(mix_dir)
|
38 |
+
if os.path.splitext(fname)[1] in input_exts
|
39 |
+
]
|
40 |
+
)
|
41 |
+
y_list = sorted(
|
42 |
+
[
|
43 |
+
os.path.join(inst_dir, fname)
|
44 |
+
for fname in os.listdir(inst_dir)
|
45 |
+
if os.path.splitext(fname)[1] in input_exts
|
46 |
+
]
|
47 |
+
)
|
48 |
+
|
49 |
+
filelist = list(zip(X_list, y_list))
|
50 |
+
|
51 |
+
return filelist
|
52 |
+
|
53 |
+
|
54 |
+
def train_val_split(dataset_dir, split_mode, val_rate, val_filelist):
|
55 |
+
if split_mode == "random":
|
56 |
+
filelist = make_pair(
|
57 |
+
os.path.join(dataset_dir, "mixtures"),
|
58 |
+
os.path.join(dataset_dir, "instruments"),
|
59 |
+
)
|
60 |
+
|
61 |
+
random.shuffle(filelist)
|
62 |
+
|
63 |
+
if len(val_filelist) == 0:
|
64 |
+
val_size = int(len(filelist) * val_rate)
|
65 |
+
train_filelist = filelist[:-val_size]
|
66 |
+
val_filelist = filelist[-val_size:]
|
67 |
+
else:
|
68 |
+
train_filelist = [
|
69 |
+
pair for pair in filelist if list(pair) not in val_filelist
|
70 |
+
]
|
71 |
+
elif split_mode == "subdirs":
|
72 |
+
if len(val_filelist) != 0:
|
73 |
+
raise ValueError(
|
74 |
+
"The `val_filelist` option is not available in `subdirs` mode"
|
75 |
+
)
|
76 |
+
|
77 |
+
train_filelist = make_pair(
|
78 |
+
os.path.join(dataset_dir, "training/mixtures"),
|
79 |
+
os.path.join(dataset_dir, "training/instruments"),
|
80 |
+
)
|
81 |
+
|
82 |
+
val_filelist = make_pair(
|
83 |
+
os.path.join(dataset_dir, "validation/mixtures"),
|
84 |
+
os.path.join(dataset_dir, "validation/instruments"),
|
85 |
+
)
|
86 |
+
|
87 |
+
return train_filelist, val_filelist
|
88 |
+
|
89 |
+
|
90 |
+
def augment(X, y, reduction_rate, reduction_mask, mixup_rate, mixup_alpha):
|
91 |
+
perm = np.random.permutation(len(X))
|
92 |
+
for i, idx in enumerate(tqdm(perm)):
|
93 |
+
if np.random.uniform() < reduction_rate:
|
94 |
+
y[idx] = spec_utils.reduce_vocal_aggressively(
|
95 |
+
X[idx], y[idx], reduction_mask
|
96 |
+
)
|
97 |
+
|
98 |
+
if np.random.uniform() < 0.5:
|
99 |
+
# swap channel
|
100 |
+
X[idx] = X[idx, ::-1]
|
101 |
+
y[idx] = y[idx, ::-1]
|
102 |
+
if np.random.uniform() < 0.02:
|
103 |
+
# mono
|
104 |
+
X[idx] = X[idx].mean(axis=0, keepdims=True)
|
105 |
+
y[idx] = y[idx].mean(axis=0, keepdims=True)
|
106 |
+
if np.random.uniform() < 0.02:
|
107 |
+
# inst
|
108 |
+
X[idx] = y[idx]
|
109 |
+
|
110 |
+
if np.random.uniform() < mixup_rate and i < len(perm) - 1:
|
111 |
+
lam = np.random.beta(mixup_alpha, mixup_alpha)
|
112 |
+
X[idx] = lam * X[idx] + (1 - lam) * X[perm[i + 1]]
|
113 |
+
y[idx] = lam * y[idx] + (1 - lam) * y[perm[i + 1]]
|
114 |
+
|
115 |
+
return X, y
|
116 |
+
|
117 |
+
|
118 |
+
def make_padding(width, cropsize, offset):
|
119 |
+
left = offset
|
120 |
+
roi_size = cropsize - left * 2
|
121 |
+
if roi_size == 0:
|
122 |
+
roi_size = cropsize
|
123 |
+
right = roi_size - (width % roi_size) + left
|
124 |
+
|
125 |
+
return left, right, roi_size
|
126 |
+
|
127 |
+
|
128 |
+
def make_training_set(filelist, cropsize, patches, sr, hop_length, n_fft, offset):
|
129 |
+
len_dataset = patches * len(filelist)
|
130 |
+
|
131 |
+
X_dataset = np.zeros((len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64)
|
132 |
+
y_dataset = np.zeros((len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64)
|
133 |
+
|
134 |
+
for i, (X_path, y_path) in enumerate(tqdm(filelist)):
|
135 |
+
X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft)
|
136 |
+
coef = np.max([np.abs(X).max(), np.abs(y).max()])
|
137 |
+
X, y = X / coef, y / coef
|
138 |
+
|
139 |
+
l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
|
140 |
+
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode="constant")
|
141 |
+
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode="constant")
|
142 |
+
|
143 |
+
starts = np.random.randint(0, X_pad.shape[2] - cropsize, patches)
|
144 |
+
ends = starts + cropsize
|
145 |
+
for j in range(patches):
|
146 |
+
idx = i * patches + j
|
147 |
+
X_dataset[idx] = X_pad[:, :, starts[j] : ends[j]]
|
148 |
+
y_dataset[idx] = y_pad[:, :, starts[j] : ends[j]]
|
149 |
+
|
150 |
+
return X_dataset, y_dataset
|
151 |
+
|
152 |
+
|
153 |
+
def make_validation_set(filelist, cropsize, sr, hop_length, n_fft, offset):
|
154 |
+
patch_list = []
|
155 |
+
patch_dir = "cs{}_sr{}_hl{}_nf{}_of{}".format(
|
156 |
+
cropsize, sr, hop_length, n_fft, offset
|
157 |
+
)
|
158 |
+
os.makedirs(patch_dir, exist_ok=True)
|
159 |
+
|
160 |
+
for i, (X_path, y_path) in enumerate(tqdm(filelist)):
|
161 |
+
basename = os.path.splitext(os.path.basename(X_path))[0]
|
162 |
+
|
163 |
+
X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft)
|
164 |
+
coef = np.max([np.abs(X).max(), np.abs(y).max()])
|
165 |
+
X, y = X / coef, y / coef
|
166 |
+
|
167 |
+
l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
|
168 |
+
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode="constant")
|
169 |
+
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode="constant")
|
170 |
+
|
171 |
+
len_dataset = int(np.ceil(X.shape[2] / roi_size))
|
172 |
+
for j in range(len_dataset):
|
173 |
+
outpath = os.path.join(patch_dir, "{}_p{}.npz".format(basename, j))
|
174 |
+
start = j * roi_size
|
175 |
+
if not os.path.exists(outpath):
|
176 |
+
np.savez(
|
177 |
+
outpath,
|
178 |
+
X=X_pad[:, :, start : start + cropsize],
|
179 |
+
y=y_pad[:, :, start : start + cropsize],
|
180 |
+
)
|
181 |
+
patch_list.append(outpath)
|
182 |
+
|
183 |
+
return VocalRemoverValidationSet(patch_list)
|
infer/lib/uvr5_pack/lib_v5/layers.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
from . import spec_utils
|
6 |
+
|
7 |
+
|
8 |
+
class Conv2DBNActiv(nn.Module):
|
9 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
10 |
+
super(Conv2DBNActiv, self).__init__()
|
11 |
+
self.conv = nn.Sequential(
|
12 |
+
nn.Conv2d(
|
13 |
+
nin,
|
14 |
+
nout,
|
15 |
+
kernel_size=ksize,
|
16 |
+
stride=stride,
|
17 |
+
padding=pad,
|
18 |
+
dilation=dilation,
|
19 |
+
bias=False,
|
20 |
+
),
|
21 |
+
nn.BatchNorm2d(nout),
|
22 |
+
activ(),
|
23 |
+
)
|
24 |
+
|
25 |
+
def __call__(self, x):
|
26 |
+
return self.conv(x)
|
27 |
+
|
28 |
+
|
29 |
+
class SeperableConv2DBNActiv(nn.Module):
|
30 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
31 |
+
super(SeperableConv2DBNActiv, self).__init__()
|
32 |
+
self.conv = nn.Sequential(
|
33 |
+
nn.Conv2d(
|
34 |
+
nin,
|
35 |
+
nin,
|
36 |
+
kernel_size=ksize,
|
37 |
+
stride=stride,
|
38 |
+
padding=pad,
|
39 |
+
dilation=dilation,
|
40 |
+
groups=nin,
|
41 |
+
bias=False,
|
42 |
+
),
|
43 |
+
nn.Conv2d(nin, nout, kernel_size=1, bias=False),
|
44 |
+
nn.BatchNorm2d(nout),
|
45 |
+
activ(),
|
46 |
+
)
|
47 |
+
|
48 |
+
def __call__(self, x):
|
49 |
+
return self.conv(x)
|
50 |
+
|
51 |
+
|
52 |
+
class Encoder(nn.Module):
|
53 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
54 |
+
super(Encoder, self).__init__()
|
55 |
+
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
56 |
+
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
57 |
+
|
58 |
+
def __call__(self, x):
|
59 |
+
skip = self.conv1(x)
|
60 |
+
h = self.conv2(skip)
|
61 |
+
|
62 |
+
return h, skip
|
63 |
+
|
64 |
+
|
65 |
+
class Decoder(nn.Module):
|
66 |
+
def __init__(
|
67 |
+
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
68 |
+
):
|
69 |
+
super(Decoder, self).__init__()
|
70 |
+
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
71 |
+
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
72 |
+
|
73 |
+
def __call__(self, x, skip=None):
|
74 |
+
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
|
75 |
+
if skip is not None:
|
76 |
+
skip = spec_utils.crop_center(skip, x)
|
77 |
+
x = torch.cat([x, skip], dim=1)
|
78 |
+
h = self.conv(x)
|
79 |
+
|
80 |
+
if self.dropout is not None:
|
81 |
+
h = self.dropout(h)
|
82 |
+
|
83 |
+
return h
|
84 |
+
|
85 |
+
|
86 |
+
class ASPPModule(nn.Module):
|
87 |
+
def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
|
88 |
+
super(ASPPModule, self).__init__()
|
89 |
+
self.conv1 = nn.Sequential(
|
90 |
+
nn.AdaptiveAvgPool2d((1, None)),
|
91 |
+
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
92 |
+
)
|
93 |
+
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
94 |
+
self.conv3 = SeperableConv2DBNActiv(
|
95 |
+
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
96 |
+
)
|
97 |
+
self.conv4 = SeperableConv2DBNActiv(
|
98 |
+
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
99 |
+
)
|
100 |
+
self.conv5 = SeperableConv2DBNActiv(
|
101 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
102 |
+
)
|
103 |
+
self.bottleneck = nn.Sequential(
|
104 |
+
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
105 |
+
)
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
_, _, h, w = x.size()
|
109 |
+
feat1 = F.interpolate(
|
110 |
+
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
111 |
+
)
|
112 |
+
feat2 = self.conv2(x)
|
113 |
+
feat3 = self.conv3(x)
|
114 |
+
feat4 = self.conv4(x)
|
115 |
+
feat5 = self.conv5(x)
|
116 |
+
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
117 |
+
bottle = self.bottleneck(out)
|
118 |
+
return bottle
|
infer/lib/uvr5_pack/lib_v5/layers_123812KB .py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
from . import spec_utils
|
6 |
+
|
7 |
+
|
8 |
+
class Conv2DBNActiv(nn.Module):
|
9 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
10 |
+
super(Conv2DBNActiv, self).__init__()
|
11 |
+
self.conv = nn.Sequential(
|
12 |
+
nn.Conv2d(
|
13 |
+
nin,
|
14 |
+
nout,
|
15 |
+
kernel_size=ksize,
|
16 |
+
stride=stride,
|
17 |
+
padding=pad,
|
18 |
+
dilation=dilation,
|
19 |
+
bias=False,
|
20 |
+
),
|
21 |
+
nn.BatchNorm2d(nout),
|
22 |
+
activ(),
|
23 |
+
)
|
24 |
+
|
25 |
+
def __call__(self, x):
|
26 |
+
return self.conv(x)
|
27 |
+
|
28 |
+
|
29 |
+
class SeperableConv2DBNActiv(nn.Module):
|
30 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
31 |
+
super(SeperableConv2DBNActiv, self).__init__()
|
32 |
+
self.conv = nn.Sequential(
|
33 |
+
nn.Conv2d(
|
34 |
+
nin,
|
35 |
+
nin,
|
36 |
+
kernel_size=ksize,
|
37 |
+
stride=stride,
|
38 |
+
padding=pad,
|
39 |
+
dilation=dilation,
|
40 |
+
groups=nin,
|
41 |
+
bias=False,
|
42 |
+
),
|
43 |
+
nn.Conv2d(nin, nout, kernel_size=1, bias=False),
|
44 |
+
nn.BatchNorm2d(nout),
|
45 |
+
activ(),
|
46 |
+
)
|
47 |
+
|
48 |
+
def __call__(self, x):
|
49 |
+
return self.conv(x)
|
50 |
+
|
51 |
+
|
52 |
+
class Encoder(nn.Module):
|
53 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
54 |
+
super(Encoder, self).__init__()
|
55 |
+
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
56 |
+
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
57 |
+
|
58 |
+
def __call__(self, x):
|
59 |
+
skip = self.conv1(x)
|
60 |
+
h = self.conv2(skip)
|
61 |
+
|
62 |
+
return h, skip
|
63 |
+
|
64 |
+
|
65 |
+
class Decoder(nn.Module):
|
66 |
+
def __init__(
|
67 |
+
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
68 |
+
):
|
69 |
+
super(Decoder, self).__init__()
|
70 |
+
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
71 |
+
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
72 |
+
|
73 |
+
def __call__(self, x, skip=None):
|
74 |
+
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
|
75 |
+
if skip is not None:
|
76 |
+
skip = spec_utils.crop_center(skip, x)
|
77 |
+
x = torch.cat([x, skip], dim=1)
|
78 |
+
h = self.conv(x)
|
79 |
+
|
80 |
+
if self.dropout is not None:
|
81 |
+
h = self.dropout(h)
|
82 |
+
|
83 |
+
return h
|
84 |
+
|
85 |
+
|
86 |
+
class ASPPModule(nn.Module):
|
87 |
+
def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
|
88 |
+
super(ASPPModule, self).__init__()
|
89 |
+
self.conv1 = nn.Sequential(
|
90 |
+
nn.AdaptiveAvgPool2d((1, None)),
|
91 |
+
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
92 |
+
)
|
93 |
+
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
94 |
+
self.conv3 = SeperableConv2DBNActiv(
|
95 |
+
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
96 |
+
)
|
97 |
+
self.conv4 = SeperableConv2DBNActiv(
|
98 |
+
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
99 |
+
)
|
100 |
+
self.conv5 = SeperableConv2DBNActiv(
|
101 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
102 |
+
)
|
103 |
+
self.bottleneck = nn.Sequential(
|
104 |
+
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
105 |
+
)
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
_, _, h, w = x.size()
|
109 |
+
feat1 = F.interpolate(
|
110 |
+
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
111 |
+
)
|
112 |
+
feat2 = self.conv2(x)
|
113 |
+
feat3 = self.conv3(x)
|
114 |
+
feat4 = self.conv4(x)
|
115 |
+
feat5 = self.conv5(x)
|
116 |
+
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
117 |
+
bottle = self.bottleneck(out)
|
118 |
+
return bottle
|
infer/lib/uvr5_pack/lib_v5/layers_123821KB.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
from . import spec_utils
|
6 |
+
|
7 |
+
|
8 |
+
class Conv2DBNActiv(nn.Module):
|
9 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
10 |
+
super(Conv2DBNActiv, self).__init__()
|
11 |
+
self.conv = nn.Sequential(
|
12 |
+
nn.Conv2d(
|
13 |
+
nin,
|
14 |
+
nout,
|
15 |
+
kernel_size=ksize,
|
16 |
+
stride=stride,
|
17 |
+
padding=pad,
|
18 |
+
dilation=dilation,
|
19 |
+
bias=False,
|
20 |
+
),
|
21 |
+
nn.BatchNorm2d(nout),
|
22 |
+
activ(),
|
23 |
+
)
|
24 |
+
|
25 |
+
def __call__(self, x):
|
26 |
+
return self.conv(x)
|
27 |
+
|
28 |
+
|
29 |
+
class SeperableConv2DBNActiv(nn.Module):
|
30 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
31 |
+
super(SeperableConv2DBNActiv, self).__init__()
|
32 |
+
self.conv = nn.Sequential(
|
33 |
+
nn.Conv2d(
|
34 |
+
nin,
|
35 |
+
nin,
|
36 |
+
kernel_size=ksize,
|
37 |
+
stride=stride,
|
38 |
+
padding=pad,
|
39 |
+
dilation=dilation,
|
40 |
+
groups=nin,
|
41 |
+
bias=False,
|
42 |
+
),
|
43 |
+
nn.Conv2d(nin, nout, kernel_size=1, bias=False),
|
44 |
+
nn.BatchNorm2d(nout),
|
45 |
+
activ(),
|
46 |
+
)
|
47 |
+
|
48 |
+
def __call__(self, x):
|
49 |
+
return self.conv(x)
|
50 |
+
|
51 |
+
|
52 |
+
class Encoder(nn.Module):
|
53 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
54 |
+
super(Encoder, self).__init__()
|
55 |
+
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
56 |
+
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
57 |
+
|
58 |
+
def __call__(self, x):
|
59 |
+
skip = self.conv1(x)
|
60 |
+
h = self.conv2(skip)
|
61 |
+
|
62 |
+
return h, skip
|
63 |
+
|
64 |
+
|
65 |
+
class Decoder(nn.Module):
|
66 |
+
def __init__(
|
67 |
+
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
68 |
+
):
|
69 |
+
super(Decoder, self).__init__()
|
70 |
+
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
71 |
+
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
72 |
+
|
73 |
+
def __call__(self, x, skip=None):
|
74 |
+
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
|
75 |
+
if skip is not None:
|
76 |
+
skip = spec_utils.crop_center(skip, x)
|
77 |
+
x = torch.cat([x, skip], dim=1)
|
78 |
+
h = self.conv(x)
|
79 |
+
|
80 |
+
if self.dropout is not None:
|
81 |
+
h = self.dropout(h)
|
82 |
+
|
83 |
+
return h
|
84 |
+
|
85 |
+
|
86 |
+
class ASPPModule(nn.Module):
|
87 |
+
def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
|
88 |
+
super(ASPPModule, self).__init__()
|
89 |
+
self.conv1 = nn.Sequential(
|
90 |
+
nn.AdaptiveAvgPool2d((1, None)),
|
91 |
+
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
92 |
+
)
|
93 |
+
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
94 |
+
self.conv3 = SeperableConv2DBNActiv(
|
95 |
+
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
96 |
+
)
|
97 |
+
self.conv4 = SeperableConv2DBNActiv(
|
98 |
+
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
99 |
+
)
|
100 |
+
self.conv5 = SeperableConv2DBNActiv(
|
101 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
102 |
+
)
|
103 |
+
self.bottleneck = nn.Sequential(
|
104 |
+
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
105 |
+
)
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
_, _, h, w = x.size()
|
109 |
+
feat1 = F.interpolate(
|
110 |
+
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
111 |
+
)
|
112 |
+
feat2 = self.conv2(x)
|
113 |
+
feat3 = self.conv3(x)
|
114 |
+
feat4 = self.conv4(x)
|
115 |
+
feat5 = self.conv5(x)
|
116 |
+
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
117 |
+
bottle = self.bottleneck(out)
|
118 |
+
return bottle
|
infer/lib/uvr5_pack/lib_v5/layers_33966KB.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
from . import spec_utils
|
6 |
+
|
7 |
+
|
8 |
+
class Conv2DBNActiv(nn.Module):
|
9 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
10 |
+
super(Conv2DBNActiv, self).__init__()
|
11 |
+
self.conv = nn.Sequential(
|
12 |
+
nn.Conv2d(
|
13 |
+
nin,
|
14 |
+
nout,
|
15 |
+
kernel_size=ksize,
|
16 |
+
stride=stride,
|
17 |
+
padding=pad,
|
18 |
+
dilation=dilation,
|
19 |
+
bias=False,
|
20 |
+
),
|
21 |
+
nn.BatchNorm2d(nout),
|
22 |
+
activ(),
|
23 |
+
)
|
24 |
+
|
25 |
+
def __call__(self, x):
|
26 |
+
return self.conv(x)
|
27 |
+
|
28 |
+
|
29 |
+
class SeperableConv2DBNActiv(nn.Module):
|
30 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
31 |
+
super(SeperableConv2DBNActiv, self).__init__()
|
32 |
+
self.conv = nn.Sequential(
|
33 |
+
nn.Conv2d(
|
34 |
+
nin,
|
35 |
+
nin,
|
36 |
+
kernel_size=ksize,
|
37 |
+
stride=stride,
|
38 |
+
padding=pad,
|
39 |
+
dilation=dilation,
|
40 |
+
groups=nin,
|
41 |
+
bias=False,
|
42 |
+
),
|
43 |
+
nn.Conv2d(nin, nout, kernel_size=1, bias=False),
|
44 |
+
nn.BatchNorm2d(nout),
|
45 |
+
activ(),
|
46 |
+
)
|
47 |
+
|
48 |
+
def __call__(self, x):
|
49 |
+
return self.conv(x)
|
50 |
+
|
51 |
+
|
52 |
+
class Encoder(nn.Module):
|
53 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
54 |
+
super(Encoder, self).__init__()
|
55 |
+
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
56 |
+
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
57 |
+
|
58 |
+
def __call__(self, x):
|
59 |
+
skip = self.conv1(x)
|
60 |
+
h = self.conv2(skip)
|
61 |
+
|
62 |
+
return h, skip
|
63 |
+
|
64 |
+
|
65 |
+
class Decoder(nn.Module):
|
66 |
+
def __init__(
|
67 |
+
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
68 |
+
):
|
69 |
+
super(Decoder, self).__init__()
|
70 |
+
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
71 |
+
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
72 |
+
|
73 |
+
def __call__(self, x, skip=None):
|
74 |
+
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
|
75 |
+
if skip is not None:
|
76 |
+
skip = spec_utils.crop_center(skip, x)
|
77 |
+
x = torch.cat([x, skip], dim=1)
|
78 |
+
h = self.conv(x)
|
79 |
+
|
80 |
+
if self.dropout is not None:
|
81 |
+
h = self.dropout(h)
|
82 |
+
|
83 |
+
return h
|
84 |
+
|
85 |
+
|
86 |
+
class ASPPModule(nn.Module):
|
87 |
+
def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
|
88 |
+
super(ASPPModule, self).__init__()
|
89 |
+
self.conv1 = nn.Sequential(
|
90 |
+
nn.AdaptiveAvgPool2d((1, None)),
|
91 |
+
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
92 |
+
)
|
93 |
+
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
94 |
+
self.conv3 = SeperableConv2DBNActiv(
|
95 |
+
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
96 |
+
)
|
97 |
+
self.conv4 = SeperableConv2DBNActiv(
|
98 |
+
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
99 |
+
)
|
100 |
+
self.conv5 = SeperableConv2DBNActiv(
|
101 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
102 |
+
)
|
103 |
+
self.conv6 = SeperableConv2DBNActiv(
|
104 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
105 |
+
)
|
106 |
+
self.conv7 = SeperableConv2DBNActiv(
|
107 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
108 |
+
)
|
109 |
+
self.bottleneck = nn.Sequential(
|
110 |
+
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
111 |
+
)
|
112 |
+
|
113 |
+
def forward(self, x):
|
114 |
+
_, _, h, w = x.size()
|
115 |
+
feat1 = F.interpolate(
|
116 |
+
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
117 |
+
)
|
118 |
+
feat2 = self.conv2(x)
|
119 |
+
feat3 = self.conv3(x)
|
120 |
+
feat4 = self.conv4(x)
|
121 |
+
feat5 = self.conv5(x)
|
122 |
+
feat6 = self.conv6(x)
|
123 |
+
feat7 = self.conv7(x)
|
124 |
+
out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
|
125 |
+
bottle = self.bottleneck(out)
|
126 |
+
return bottle
|
infer/lib/uvr5_pack/lib_v5/layers_537227KB.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
from . import spec_utils
|
6 |
+
|
7 |
+
|
8 |
+
class Conv2DBNActiv(nn.Module):
|
9 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
10 |
+
super(Conv2DBNActiv, self).__init__()
|
11 |
+
self.conv = nn.Sequential(
|
12 |
+
nn.Conv2d(
|
13 |
+
nin,
|
14 |
+
nout,
|
15 |
+
kernel_size=ksize,
|
16 |
+
stride=stride,
|
17 |
+
padding=pad,
|
18 |
+
dilation=dilation,
|
19 |
+
bias=False,
|
20 |
+
),
|
21 |
+
nn.BatchNorm2d(nout),
|
22 |
+
activ(),
|
23 |
+
)
|
24 |
+
|
25 |
+
def __call__(self, x):
|
26 |
+
return self.conv(x)
|
27 |
+
|
28 |
+
|
29 |
+
class SeperableConv2DBNActiv(nn.Module):
|
30 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
31 |
+
super(SeperableConv2DBNActiv, self).__init__()
|
32 |
+
self.conv = nn.Sequential(
|
33 |
+
nn.Conv2d(
|
34 |
+
nin,
|
35 |
+
nin,
|
36 |
+
kernel_size=ksize,
|
37 |
+
stride=stride,
|
38 |
+
padding=pad,
|
39 |
+
dilation=dilation,
|
40 |
+
groups=nin,
|
41 |
+
bias=False,
|
42 |
+
),
|
43 |
+
nn.Conv2d(nin, nout, kernel_size=1, bias=False),
|
44 |
+
nn.BatchNorm2d(nout),
|
45 |
+
activ(),
|
46 |
+
)
|
47 |
+
|
48 |
+
def __call__(self, x):
|
49 |
+
return self.conv(x)
|
50 |
+
|
51 |
+
|
52 |
+
class Encoder(nn.Module):
|
53 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
54 |
+
super(Encoder, self).__init__()
|
55 |
+
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
56 |
+
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
57 |
+
|
58 |
+
def __call__(self, x):
|
59 |
+
skip = self.conv1(x)
|
60 |
+
h = self.conv2(skip)
|
61 |
+
|
62 |
+
return h, skip
|
63 |
+
|
64 |
+
|
65 |
+
class Decoder(nn.Module):
|
66 |
+
def __init__(
|
67 |
+
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
68 |
+
):
|
69 |
+
super(Decoder, self).__init__()
|
70 |
+
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
71 |
+
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
72 |
+
|
73 |
+
def __call__(self, x, skip=None):
|
74 |
+
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
|
75 |
+
if skip is not None:
|
76 |
+
skip = spec_utils.crop_center(skip, x)
|
77 |
+
x = torch.cat([x, skip], dim=1)
|
78 |
+
h = self.conv(x)
|
79 |
+
|
80 |
+
if self.dropout is not None:
|
81 |
+
h = self.dropout(h)
|
82 |
+
|
83 |
+
return h
|
84 |
+
|
85 |
+
|
86 |
+
class ASPPModule(nn.Module):
|
87 |
+
def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
|
88 |
+
super(ASPPModule, self).__init__()
|
89 |
+
self.conv1 = nn.Sequential(
|
90 |
+
nn.AdaptiveAvgPool2d((1, None)),
|
91 |
+
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
92 |
+
)
|
93 |
+
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
94 |
+
self.conv3 = SeperableConv2DBNActiv(
|
95 |
+
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
96 |
+
)
|
97 |
+
self.conv4 = SeperableConv2DBNActiv(
|
98 |
+
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
99 |
+
)
|
100 |
+
self.conv5 = SeperableConv2DBNActiv(
|
101 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
102 |
+
)
|
103 |
+
self.conv6 = SeperableConv2DBNActiv(
|
104 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
105 |
+
)
|
106 |
+
self.conv7 = SeperableConv2DBNActiv(
|
107 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
108 |
+
)
|
109 |
+
self.bottleneck = nn.Sequential(
|
110 |
+
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
111 |
+
)
|
112 |
+
|
113 |
+
def forward(self, x):
|
114 |
+
_, _, h, w = x.size()
|
115 |
+
feat1 = F.interpolate(
|
116 |
+
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
117 |
+
)
|
118 |
+
feat2 = self.conv2(x)
|
119 |
+
feat3 = self.conv3(x)
|
120 |
+
feat4 = self.conv4(x)
|
121 |
+
feat5 = self.conv5(x)
|
122 |
+
feat6 = self.conv6(x)
|
123 |
+
feat7 = self.conv7(x)
|
124 |
+
out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
|
125 |
+
bottle = self.bottleneck(out)
|
126 |
+
return bottle
|
infer/lib/uvr5_pack/lib_v5/layers_537238KB.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
from . import spec_utils
|
6 |
+
|
7 |
+
|
8 |
+
class Conv2DBNActiv(nn.Module):
|
9 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
10 |
+
super(Conv2DBNActiv, self).__init__()
|
11 |
+
self.conv = nn.Sequential(
|
12 |
+
nn.Conv2d(
|
13 |
+
nin,
|
14 |
+
nout,
|
15 |
+
kernel_size=ksize,
|
16 |
+
stride=stride,
|
17 |
+
padding=pad,
|
18 |
+
dilation=dilation,
|
19 |
+
bias=False,
|
20 |
+
),
|
21 |
+
nn.BatchNorm2d(nout),
|
22 |
+
activ(),
|
23 |
+
)
|
24 |
+
|
25 |
+
def __call__(self, x):
|
26 |
+
return self.conv(x)
|
27 |
+
|
28 |
+
|
29 |
+
class SeperableConv2DBNActiv(nn.Module):
|
30 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
31 |
+
super(SeperableConv2DBNActiv, self).__init__()
|
32 |
+
self.conv = nn.Sequential(
|
33 |
+
nn.Conv2d(
|
34 |
+
nin,
|
35 |
+
nin,
|
36 |
+
kernel_size=ksize,
|
37 |
+
stride=stride,
|
38 |
+
padding=pad,
|
39 |
+
dilation=dilation,
|
40 |
+
groups=nin,
|
41 |
+
bias=False,
|
42 |
+
),
|
43 |
+
nn.Conv2d(nin, nout, kernel_size=1, bias=False),
|
44 |
+
nn.BatchNorm2d(nout),
|
45 |
+
activ(),
|
46 |
+
)
|
47 |
+
|
48 |
+
def __call__(self, x):
|
49 |
+
return self.conv(x)
|
50 |
+
|
51 |
+
|
52 |
+
class Encoder(nn.Module):
|
53 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
54 |
+
super(Encoder, self).__init__()
|
55 |
+
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
56 |
+
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
57 |
+
|
58 |
+
def __call__(self, x):
|
59 |
+
skip = self.conv1(x)
|
60 |
+
h = self.conv2(skip)
|
61 |
+
|
62 |
+
return h, skip
|
63 |
+
|
64 |
+
|
65 |
+
class Decoder(nn.Module):
|
66 |
+
def __init__(
|
67 |
+
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
68 |
+
):
|
69 |
+
super(Decoder, self).__init__()
|
70 |
+
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
71 |
+
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
72 |
+
|
73 |
+
def __call__(self, x, skip=None):
|
74 |
+
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
|
75 |
+
if skip is not None:
|
76 |
+
skip = spec_utils.crop_center(skip, x)
|
77 |
+
x = torch.cat([x, skip], dim=1)
|
78 |
+
h = self.conv(x)
|
79 |
+
|
80 |
+
if self.dropout is not None:
|
81 |
+
h = self.dropout(h)
|
82 |
+
|
83 |
+
return h
|
84 |
+
|
85 |
+
|
86 |
+
class ASPPModule(nn.Module):
|
87 |
+
def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
|
88 |
+
super(ASPPModule, self).__init__()
|
89 |
+
self.conv1 = nn.Sequential(
|
90 |
+
nn.AdaptiveAvgPool2d((1, None)),
|
91 |
+
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
92 |
+
)
|
93 |
+
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
94 |
+
self.conv3 = SeperableConv2DBNActiv(
|
95 |
+
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
96 |
+
)
|
97 |
+
self.conv4 = SeperableConv2DBNActiv(
|
98 |
+
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
99 |
+
)
|
100 |
+
self.conv5 = SeperableConv2DBNActiv(
|
101 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
102 |
+
)
|
103 |
+
self.conv6 = SeperableConv2DBNActiv(
|
104 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
105 |
+
)
|
106 |
+
self.conv7 = SeperableConv2DBNActiv(
|
107 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
108 |
+
)
|
109 |
+
self.bottleneck = nn.Sequential(
|
110 |
+
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
111 |
+
)
|
112 |
+
|
113 |
+
def forward(self, x):
|
114 |
+
_, _, h, w = x.size()
|
115 |
+
feat1 = F.interpolate(
|
116 |
+
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
117 |
+
)
|
118 |
+
feat2 = self.conv2(x)
|
119 |
+
feat3 = self.conv3(x)
|
120 |
+
feat4 = self.conv4(x)
|
121 |
+
feat5 = self.conv5(x)
|
122 |
+
feat6 = self.conv6(x)
|
123 |
+
feat7 = self.conv7(x)
|
124 |
+
out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
|
125 |
+
bottle = self.bottleneck(out)
|
126 |
+
return bottle
|
infer/lib/uvr5_pack/lib_v5/layers_new.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
from . import spec_utils
|
6 |
+
|
7 |
+
|
8 |
+
class Conv2DBNActiv(nn.Module):
|
9 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
10 |
+
super(Conv2DBNActiv, self).__init__()
|
11 |
+
self.conv = nn.Sequential(
|
12 |
+
nn.Conv2d(
|
13 |
+
nin,
|
14 |
+
nout,
|
15 |
+
kernel_size=ksize,
|
16 |
+
stride=stride,
|
17 |
+
padding=pad,
|
18 |
+
dilation=dilation,
|
19 |
+
bias=False,
|
20 |
+
),
|
21 |
+
nn.BatchNorm2d(nout),
|
22 |
+
activ(),
|
23 |
+
)
|
24 |
+
|
25 |
+
def __call__(self, x):
|
26 |
+
return self.conv(x)
|
27 |
+
|
28 |
+
|
29 |
+
class Encoder(nn.Module):
|
30 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
31 |
+
super(Encoder, self).__init__()
|
32 |
+
self.conv1 = Conv2DBNActiv(nin, nout, ksize, stride, pad, activ=activ)
|
33 |
+
self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
|
34 |
+
|
35 |
+
def __call__(self, x):
|
36 |
+
h = self.conv1(x)
|
37 |
+
h = self.conv2(h)
|
38 |
+
|
39 |
+
return h
|
40 |
+
|
41 |
+
|
42 |
+
class Decoder(nn.Module):
|
43 |
+
def __init__(
|
44 |
+
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
45 |
+
):
|
46 |
+
super(Decoder, self).__init__()
|
47 |
+
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
48 |
+
# self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
|
49 |
+
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
50 |
+
|
51 |
+
def __call__(self, x, skip=None):
|
52 |
+
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
|
53 |
+
|
54 |
+
if skip is not None:
|
55 |
+
skip = spec_utils.crop_center(skip, x)
|
56 |
+
x = torch.cat([x, skip], dim=1)
|
57 |
+
|
58 |
+
h = self.conv1(x)
|
59 |
+
# h = self.conv2(h)
|
60 |
+
|
61 |
+
if self.dropout is not None:
|
62 |
+
h = self.dropout(h)
|
63 |
+
|
64 |
+
return h
|
65 |
+
|
66 |
+
|
67 |
+
class ASPPModule(nn.Module):
|
68 |
+
def __init__(self, nin, nout, dilations=(4, 8, 12), activ=nn.ReLU, dropout=False):
|
69 |
+
super(ASPPModule, self).__init__()
|
70 |
+
self.conv1 = nn.Sequential(
|
71 |
+
nn.AdaptiveAvgPool2d((1, None)),
|
72 |
+
Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ),
|
73 |
+
)
|
74 |
+
self.conv2 = Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
|
75 |
+
self.conv3 = Conv2DBNActiv(
|
76 |
+
nin, nout, 3, 1, dilations[0], dilations[0], activ=activ
|
77 |
+
)
|
78 |
+
self.conv4 = Conv2DBNActiv(
|
79 |
+
nin, nout, 3, 1, dilations[1], dilations[1], activ=activ
|
80 |
+
)
|
81 |
+
self.conv5 = Conv2DBNActiv(
|
82 |
+
nin, nout, 3, 1, dilations[2], dilations[2], activ=activ
|
83 |
+
)
|
84 |
+
self.bottleneck = Conv2DBNActiv(nout * 5, nout, 1, 1, 0, activ=activ)
|
85 |
+
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
86 |
+
|
87 |
+
def forward(self, x):
|
88 |
+
_, _, h, w = x.size()
|
89 |
+
feat1 = F.interpolate(
|
90 |
+
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
91 |
+
)
|
92 |
+
feat2 = self.conv2(x)
|
93 |
+
feat3 = self.conv3(x)
|
94 |
+
feat4 = self.conv4(x)
|
95 |
+
feat5 = self.conv5(x)
|
96 |
+
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
97 |
+
out = self.bottleneck(out)
|
98 |
+
|
99 |
+
if self.dropout is not None:
|
100 |
+
out = self.dropout(out)
|
101 |
+
|
102 |
+
return out
|
103 |
+
|
104 |
+
|
105 |
+
class LSTMModule(nn.Module):
|
106 |
+
def __init__(self, nin_conv, nin_lstm, nout_lstm):
|
107 |
+
super(LSTMModule, self).__init__()
|
108 |
+
self.conv = Conv2DBNActiv(nin_conv, 1, 1, 1, 0)
|
109 |
+
self.lstm = nn.LSTM(
|
110 |
+
input_size=nin_lstm, hidden_size=nout_lstm // 2, bidirectional=True
|
111 |
+
)
|
112 |
+
self.dense = nn.Sequential(
|
113 |
+
nn.Linear(nout_lstm, nin_lstm), nn.BatchNorm1d(nin_lstm), nn.ReLU()
|
114 |
+
)
|
115 |
+
|
116 |
+
def forward(self, x):
|
117 |
+
N, _, nbins, nframes = x.size()
|
118 |
+
h = self.conv(x)[:, 0] # N, nbins, nframes
|
119 |
+
h = h.permute(2, 0, 1) # nframes, N, nbins
|
120 |
+
h, _ = self.lstm(h)
|
121 |
+
h = self.dense(h.reshape(-1, h.size()[-1])) # nframes * N, nbins
|
122 |
+
h = h.reshape(nframes, N, 1, nbins)
|
123 |
+
h = h.permute(1, 2, 3, 0)
|
124 |
+
|
125 |
+
return h
|
infer/lib/uvr5_pack/lib_v5/model_param_init.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import pathlib
|
4 |
+
|
5 |
+
default_param = {}
|
6 |
+
default_param["bins"] = 768
|
7 |
+
default_param["unstable_bins"] = 9 # training only
|
8 |
+
default_param["reduction_bins"] = 762 # training only
|
9 |
+
default_param["sr"] = 44100
|
10 |
+
default_param["pre_filter_start"] = 757
|
11 |
+
default_param["pre_filter_stop"] = 768
|
12 |
+
default_param["band"] = {}
|
13 |
+
|
14 |
+
|
15 |
+
default_param["band"][1] = {
|
16 |
+
"sr": 11025,
|
17 |
+
"hl": 128,
|
18 |
+
"n_fft": 960,
|
19 |
+
"crop_start": 0,
|
20 |
+
"crop_stop": 245,
|
21 |
+
"lpf_start": 61, # inference only
|
22 |
+
"res_type": "polyphase",
|
23 |
+
}
|
24 |
+
|
25 |
+
default_param["band"][2] = {
|
26 |
+
"sr": 44100,
|
27 |
+
"hl": 512,
|
28 |
+
"n_fft": 1536,
|
29 |
+
"crop_start": 24,
|
30 |
+
"crop_stop": 547,
|
31 |
+
"hpf_start": 81, # inference only
|
32 |
+
"res_type": "sinc_best",
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
def int_keys(d):
|
37 |
+
r = {}
|
38 |
+
for k, v in d:
|
39 |
+
if k.isdigit():
|
40 |
+
k = int(k)
|
41 |
+
r[k] = v
|
42 |
+
return r
|
43 |
+
|
44 |
+
|
45 |
+
class ModelParameters(object):
|
46 |
+
def __init__(self, config_path=""):
|
47 |
+
if ".pth" == pathlib.Path(config_path).suffix:
|
48 |
+
import zipfile
|
49 |
+
|
50 |
+
with zipfile.ZipFile(config_path, "r") as zip:
|
51 |
+
self.param = json.loads(
|
52 |
+
zip.read("param.json"), object_pairs_hook=int_keys
|
53 |
+
)
|
54 |
+
elif ".json" == pathlib.Path(config_path).suffix:
|
55 |
+
with open(config_path, "r") as f:
|
56 |
+
self.param = json.loads(f.read(), object_pairs_hook=int_keys)
|
57 |
+
else:
|
58 |
+
self.param = default_param
|
59 |
+
|
60 |
+
for k in [
|
61 |
+
"mid_side",
|
62 |
+
"mid_side_b",
|
63 |
+
"mid_side_b2",
|
64 |
+
"stereo_w",
|
65 |
+
"stereo_n",
|
66 |
+
"reverse",
|
67 |
+
]:
|
68 |
+
if not k in self.param:
|
69 |
+
self.param[k] = False
|
infer/lib/uvr5_pack/lib_v5/modelparams/1band_sr16000_hl512.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bins": 1024,
|
3 |
+
"unstable_bins": 0,
|
4 |
+
"reduction_bins": 0,
|
5 |
+
"band": {
|
6 |
+
"1": {
|
7 |
+
"sr": 16000,
|
8 |
+
"hl": 512,
|
9 |
+
"n_fft": 2048,
|
10 |
+
"crop_start": 0,
|
11 |
+
"crop_stop": 1024,
|
12 |
+
"hpf_start": -1,
|
13 |
+
"res_type": "sinc_best"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"sr": 16000,
|
17 |
+
"pre_filter_start": 1023,
|
18 |
+
"pre_filter_stop": 1024
|
19 |
+
}
|
infer/lib/uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bins": 1024,
|
3 |
+
"unstable_bins": 0,
|
4 |
+
"reduction_bins": 0,
|
5 |
+
"band": {
|
6 |
+
"1": {
|
7 |
+
"sr": 32000,
|
8 |
+
"hl": 512,
|
9 |
+
"n_fft": 2048,
|
10 |
+
"crop_start": 0,
|
11 |
+
"crop_stop": 1024,
|
12 |
+
"hpf_start": -1,
|
13 |
+
"res_type": "kaiser_fast"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"sr": 32000,
|
17 |
+
"pre_filter_start": 1000,
|
18 |
+
"pre_filter_stop": 1021
|
19 |
+
}
|
infer/lib/uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bins": 1024,
|
3 |
+
"unstable_bins": 0,
|
4 |
+
"reduction_bins": 0,
|
5 |
+
"band": {
|
6 |
+
"1": {
|
7 |
+
"sr": 33075,
|
8 |
+
"hl": 384,
|
9 |
+
"n_fft": 2048,
|
10 |
+
"crop_start": 0,
|
11 |
+
"crop_stop": 1024,
|
12 |
+
"hpf_start": -1,
|
13 |
+
"res_type": "sinc_best"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"sr": 33075,
|
17 |
+
"pre_filter_start": 1000,
|
18 |
+
"pre_filter_stop": 1021
|
19 |
+
}
|
infer/lib/uvr5_pack/lib_v5/modelparams/1band_sr44100_hl1024.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bins": 1024,
|
3 |
+
"unstable_bins": 0,
|
4 |
+
"reduction_bins": 0,
|
5 |
+
"band": {
|
6 |
+
"1": {
|
7 |
+
"sr": 44100,
|
8 |
+
"hl": 1024,
|
9 |
+
"n_fft": 2048,
|
10 |
+
"crop_start": 0,
|
11 |
+
"crop_stop": 1024,
|
12 |
+
"hpf_start": -1,
|
13 |
+
"res_type": "sinc_best"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"sr": 44100,
|
17 |
+
"pre_filter_start": 1023,
|
18 |
+
"pre_filter_stop": 1024
|
19 |
+
}
|
infer/lib/uvr5_pack/lib_v5/modelparams/1band_sr44100_hl256.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bins": 256,
|
3 |
+
"unstable_bins": 0,
|
4 |
+
"reduction_bins": 0,
|
5 |
+
"band": {
|
6 |
+
"1": {
|
7 |
+
"sr": 44100,
|
8 |
+
"hl": 256,
|
9 |
+
"n_fft": 512,
|
10 |
+
"crop_start": 0,
|
11 |
+
"crop_stop": 256,
|
12 |
+
"hpf_start": -1,
|
13 |
+
"res_type": "sinc_best"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"sr": 44100,
|
17 |
+
"pre_filter_start": 256,
|
18 |
+
"pre_filter_stop": 256
|
19 |
+
}
|
infer/lib/uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bins": 1024,
|
3 |
+
"unstable_bins": 0,
|
4 |
+
"reduction_bins": 0,
|
5 |
+
"band": {
|
6 |
+
"1": {
|
7 |
+
"sr": 44100,
|
8 |
+
"hl": 512,
|
9 |
+
"n_fft": 2048,
|
10 |
+
"crop_start": 0,
|
11 |
+
"crop_stop": 1024,
|
12 |
+
"hpf_start": -1,
|
13 |
+
"res_type": "sinc_best"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"sr": 44100,
|
17 |
+
"pre_filter_start": 1023,
|
18 |
+
"pre_filter_stop": 1024
|
19 |
+
}
|
infer/lib/uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512_cut.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bins": 1024,
|
3 |
+
"unstable_bins": 0,
|
4 |
+
"reduction_bins": 0,
|
5 |
+
"band": {
|
6 |
+
"1": {
|
7 |
+
"sr": 44100,
|
8 |
+
"hl": 512,
|
9 |
+
"n_fft": 2048,
|
10 |
+
"crop_start": 0,
|
11 |
+
"crop_stop": 700,
|
12 |
+
"hpf_start": -1,
|
13 |
+
"res_type": "sinc_best"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"sr": 44100,
|
17 |
+
"pre_filter_start": 1023,
|
18 |
+
"pre_filter_stop": 700
|
19 |
+
}
|