Spaces:
Sleeping
Sleeping
File size: 2,322 Bytes
2201868 342396f 2201868 163e73a 4af9c6b 7685e7a 6fc2787 4af9c6b 2201868 0f694f1 342396f 2201868 4af9c6b bf2b357 4af9c6b bf2b357 9ede138 bf2b357 9ede138 991ba20 bf2b357 9ede138 bf2b357 163e73a 4dd171e bf2b357 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
import gradio as gr
import torch
from torch import nn
from torchvision import models, transforms
from huggingface_hub import hf_hub_download
from PIL import Image
import os
import logging
import requests
from io import BytesIO
# Setup logging
logging.basicConfig(level=logging.INFO)
# Define the number of classes
num_classes = 2
# Download model from Hugging Face
def download_model():
model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin")
return model_path
# Load the model from Hugging Face
def load_model(model_path):
model = models.resnet50(pretrained=False)
model.fc = nn.Linear(model.fc.in_features, num_classes)
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
model.eval()
return model
# Download the model and load it
model_path = download_model()
model = load_model(model_path)
# Define the transformation for the input image
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
# Prediction function for an uploaded image
def predict_from_image(image_url):
try:
# Download the image from the provided URL
response = requests.get(image_url)
response.raise_for_status() # Check if the request was successful
image = Image.open(BytesIO(response.content))
# Apply transformations
image_tensor = transform(image).unsqueeze(0) # Add batch dimension
# Perform prediction
with torch.no_grad():
outputs = model(image_tensor)
predicted_class = torch.argmax(outputs, dim=1).item()
# Interpret the result
if predicted_class == 0:
return {"result": "The photo is of fall army worm with problem ID 126."}
elif predicted_class == 1:
return {"result": "The photo is of a healthy maize image."}
else:
return {"error": "Unexpected class prediction."}
except Exception as e:
return {"error": str(e)}
demo = gr.Interface(
fn=predict_from_image,
inputs="text",
outputs="json",
title="Image Processing",
description="Enter a URL to an image",
)
if __name__ == "__main__":
demo.launch() |