Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from torch import nn | |
from torchvision import models, transforms | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
import requests | |
import base64 | |
from io import BytesIO | |
# Define the number of classes | |
num_classes = 2 # Update with the actual number of classes in your dataset (e.g., 2 for healthy and anomalous) | |
# Download model from Hugging Face | |
def download_model(): | |
model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin") | |
return model_path | |
# Load the model from Hugging Face | |
def load_model(model_path): | |
model = models.resnet50(pretrained=False) # Set pretrained=False because you're loading custom weights | |
model.fc = nn.Linear(model.fc.in_features, num_classes) # Adjust for the number of classes in your dataset | |
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))) # Load model on CPU for compatibility | |
model.eval() # Set to evaluation mode | |
return model | |
# Download the model and load it | |
model_path = download_model() # Downloads the model from Hugging Face Hub | |
model = load_model(model_path) | |
# Define the transformation for the input image | |
transform = transforms.Compose([ | |
transforms.Resize(256), # Resize the image to 256x256 | |
transforms.CenterCrop(224), # Crop the image to 224x224 | |
transforms.ToTensor(), # Convert the image to a Tensor | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), # Normalize the image (ImageNet mean and std) | |
]) | |
# Function to convert image from URL to PIL image | |
def url_to_image(image_url): | |
response = requests.get(image_url) | |
img = Image.open(BytesIO(response.content)) | |
return img | |
# Function to convert base64 string to PIL image | |
def base64_to_pil(base64_string): | |
img_data = base64.b64decode(base64_string) | |
return Image.open(BytesIO(img_data)) | |
# Define the prediction function | |
def predict(image_input): | |
# If input is a string (URL or base64 encoded), handle accordingly | |
if isinstance(image_input, str): | |
if image_input.startswith("http"): # If URL | |
image = url_to_image(image_input) | |
elif image_input.startswith("data:image"): # If base64 string | |
image = base64_to_pil(image_input) | |
else: # Local image path | |
image = Image.open(image_input) | |
else: | |
image = image_input # If the input is already a PIL image | |
# Apply the necessary transformations to the image | |
image = transform(image).unsqueeze(0) # Add batch dimension | |
image = image.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) # Move to GPU if available | |
with torch.no_grad(): | |
outputs = model(image) # Perform forward pass | |
predicted_class = torch.argmax(outputs, dim=1).item() # Get the predicted class | |
# Create a response based on the predicted class | |
if predicted_class == 0: | |
return "The photo you've sent is of fall army worm with problem ID 126." | |
elif predicted_class == 1: | |
return "The photo you've sent is of a healthy wheat image." | |
else: | |
return "Unexpected class prediction." | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=predict, # Function for prediction | |
inputs=gr.Image(type="pil"), # Image input | |
outputs=gr.Textbox(), # Output: Predicted class | |
live=True, # Updates as the user uploads an image | |
title="Maize Anomaly Detection", | |
description="Upload an image of maize to detect anomalies like disease or pest infestation. You can provide local paths, URLs, or base64-encoded images." | |
) | |
# Launch the Gradio interface | |
iface.launch(share=True) | |