Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,40 +5,43 @@ from torchvision import models, transforms
|
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
from PIL import Image
|
7 |
|
8 |
-
num_classes = 2
|
9 |
|
|
|
10 |
def download_model():
|
11 |
model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin")
|
12 |
return model_path
|
13 |
|
|
|
14 |
def load_model(model_path):
|
15 |
-
model = models.resnet50(pretrained=False)
|
16 |
-
model.fc = nn.Linear(model.fc.in_features, num_classes)
|
17 |
-
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
|
18 |
-
model.eval()
|
19 |
return model
|
20 |
|
21 |
-
|
|
|
22 |
model = load_model(model_path)
|
23 |
|
24 |
-
|
25 |
transform = transforms.Compose([
|
26 |
transforms.Resize(256), # Resize the image to 256x256
|
27 |
transforms.CenterCrop(224), # Crop the image to 224x224
|
28 |
transforms.ToTensor(), # Convert the image to a Tensor
|
29 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
30 |
])
|
31 |
|
|
|
32 |
def predict(image):
|
33 |
-
|
34 |
-
image =
|
35 |
-
|
36 |
-
|
37 |
with torch.no_grad():
|
38 |
-
outputs = model(image)
|
39 |
-
predicted_class = torch.argmax(outputs, dim=1).item()
|
40 |
|
41 |
-
|
42 |
if predicted_class == 0:
|
43 |
return "The photo you've sent is of fall army worm with problem ID 126."
|
44 |
elif predicted_class == 1:
|
@@ -46,13 +49,16 @@ def predict(image):
|
|
46 |
else:
|
47 |
return "Unexpected class prediction."
|
48 |
|
|
|
49 |
iface = gr.Interface(
|
50 |
-
fn=predict,
|
51 |
-
inputs=gr.Image(type="pil"),
|
52 |
-
outputs=gr.Textbox(),
|
53 |
-
live=True,
|
54 |
title="Maize Anomaly Detection",
|
55 |
-
description="Upload an image of maize to detect anomalies like disease or pest infestation."
|
|
|
56 |
)
|
57 |
|
|
|
58 |
iface.launch()
|
|
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
from PIL import Image
|
7 |
|
8 |
+
num_classes = 2 # Number of classes for your dataset
|
9 |
|
10 |
+
# Download model weights from Hugging Face
|
11 |
def download_model():
|
12 |
model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin")
|
13 |
return model_path
|
14 |
|
15 |
+
# Load the model from the downloaded weights
|
16 |
def load_model(model_path):
|
17 |
+
model = models.resnet50(pretrained=False) # Set pretrained=False for custom weights
|
18 |
+
model.fc = nn.Linear(model.fc.in_features, num_classes) # Adjust final layer for your number of classes
|
19 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))) # Load model weights
|
20 |
+
model.eval() # Set model to evaluation mode
|
21 |
return model
|
22 |
|
23 |
+
# Download and load the model
|
24 |
+
model_path = download_model()
|
25 |
model = load_model(model_path)
|
26 |
|
27 |
+
# Image transformation pipeline
|
28 |
transform = transforms.Compose([
|
29 |
transforms.Resize(256), # Resize the image to 256x256
|
30 |
transforms.CenterCrop(224), # Crop the image to 224x224
|
31 |
transforms.ToTensor(), # Convert the image to a Tensor
|
32 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), # Normalize for ImageNet
|
33 |
])
|
34 |
|
35 |
+
# Prediction function
|
36 |
def predict(image):
|
37 |
+
image = transform(image).unsqueeze(0) # Add batch dimension
|
38 |
+
image = image.to(torch.device("cpu")) # Move the image to CPU (adjust if you want to use GPU)
|
39 |
+
|
|
|
40 |
with torch.no_grad():
|
41 |
+
outputs = model(image) # Perform forward pass
|
42 |
+
predicted_class = torch.argmax(outputs, dim=1).item() # Get the predicted class ID
|
43 |
|
44 |
+
# Return appropriate response based on predicted class
|
45 |
if predicted_class == 0:
|
46 |
return "The photo you've sent is of fall army worm with problem ID 126."
|
47 |
elif predicted_class == 1:
|
|
|
49 |
else:
|
50 |
return "Unexpected class prediction."
|
51 |
|
52 |
+
# Create the Gradio interface and expose it as an API
|
53 |
iface = gr.Interface(
|
54 |
+
fn=predict, # Prediction function
|
55 |
+
inputs=gr.Image(type="pil"), # Image input (PIL format)
|
56 |
+
outputs=gr.Textbox(), # Text output (Predicted class description)
|
57 |
+
live=True, # Update predictions as the user uploads an image
|
58 |
title="Maize Anomaly Detection",
|
59 |
+
description="Upload an image of maize to detect anomalies like disease or pest infestation.",
|
60 |
+
api=True # Expose the Gradio interface for API calls (POST requests)
|
61 |
)
|
62 |
|
63 |
+
# Launch the Gradio interface
|
64 |
iface.launch()
|