import gradio as gr import json import torch from torch import nn from torchvision import models, transforms from huggingface_hub import hf_hub_download from PIL import Image import requests from io import BytesIO from fastapi import FastAPI from gradio.routes import App # Define the number of classes num_classes = 2 # In-memory storage for results results_cache = {} # Download model from Hugging Face def download_model(): model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin") return model_path # Load the model from Hugging Face def load_model(model_path): model = models.resnet50(pretrained=False) model.fc = nn.Linear(model.fc.in_features, num_classes) model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))) model.eval() return model # Download the model and load it model_path = download_model() model = load_model(model_path) # Define the transformation for the input image transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) # Function to predict from image content def predict_from_image(image): try: # Log the image processing print(f"Processing image: {image}") # Ensure the image is a PIL Image if not isinstance(image, Image.Image): raise ValueError("Invalid image format received. Please provide a valid image.") # Apply transformations image_tensor = transform(image).unsqueeze(0) # Predict with torch.no_grad(): outputs = model(image_tensor) predicted_class = torch.argmax(outputs, dim=1).item() # Interpret the result if predicted_class == 0: return {"result": "The photo is of fall army worm with problem ID 126."} elif predicted_class == 1: return {"result": "The photo is of a healthy maize image."} else: return {"error": "Unexpected class prediction."} except Exception as e: print(f"Error during image processing: {e}") return {"error": str(e)} # Function to predict from URL def predict_from_url(url): try: # Fetch the image from the URL response = requests.get(url) response.raise_for_status() # Ensure the request was successful image = Image.open(BytesIO(response.content)) print(f"Fetched image from URL: {url}") return predict_from_image(image) except Exception as e: print(f"Error during URL processing: {e}") return {"error": f"Failed to process the URL: {str(e)}"} # Main prediction function with caching def predict(image, url): try: if image: result = predict_from_image(image) elif url: result = predict_from_url(url) else: result = {"error": "No input provided. Please upload an image or provide a URL."} # Generate and store the event ID event_id = id(result) # Use Python's id() function to generate a unique identifier results_cache[event_id] = result # Log the result print(f"Event ID: {event_id}, Result: {result}") return {"event_id": event_id, "result": result} except Exception as e: print(f"Error in prediction function: {e}") return {"error": str(e)} # Function to retrieve result by event_id def get_result(event_id): try: # Convert event_id from string to int event_id = int(event_id) result = results_cache.get(event_id) if result: return result else: return {"error": "No result found for the provided event ID."} except Exception as e: return {"error": f"Invalid event ID: {str(e)}"} # Create a FastAPI app for handling the GET request app = FastAPI() @app.get("/result/{event_id}") def get_result_api(event_id: int): return get_result(event_id) # Gradio interface setup iface = gr.Blocks() with iface: gr.Markdown("# Maize Anomaly Detection") with gr.Row(): image_input = gr.Image(type="pil", label="Upload an Image") url_input = gr.Textbox(label="Or Enter an Image URL", placeholder="Provide a valid image URL") output = gr.JSON(label="Prediction Result") submit_button = gr.Button("Submit") submit_button.click( fn=predict, inputs=[image_input, url_input], outputs=output ) # Event ID retrieval section with gr.Row(): event_id_input = gr.Textbox(label="Event ID", placeholder="Enter Event ID") event_output = gr.JSON(label="Retrieved Result") retrieve_button = gr.Button("Get Result") retrieve_button.click( fn=get_result, inputs=[event_id_input], outputs=event_output ) # Launch the Gradio interface iface.launch(share=True, show_error=True, server_name="0.0.0.0", server_port=7860)