Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import { createLlamaPrompt } from "@/lib/createLlamaPrompt" | |
import { predict } from "./predict" | |
import { Preset } from "../engine/presets" | |
type LLMResponse = Array<{panel: number; caption: string }> | |
export const getStory = async ({ | |
preset, | |
prompt = "", | |
}: { | |
preset: Preset; | |
prompt: string; | |
}): Promise<string[]> => { | |
const query = createLlamaPrompt([ | |
{ | |
role: "system", | |
content: [ | |
`You are a comic book author specialized in ${preset.llmPrompt}`, | |
`Please generate detailed drawing instructions for the 4 panels of a new silent comic book page.`, | |
`Give your response as a JSON array like this: \`Array<{ panel: number; caption: string}>\`.`, | |
// `Give your response as Markdown bullet points.`, | |
`Be brief in your caption don't add your own comments. Be straight to the point, and never reply things like "Sure, I can.." etc.` | |
].filter(item => item).join("\n") | |
}, | |
{ | |
role: "user", | |
content: `The story is: ${prompt}`, | |
} | |
]) | |
let result = "" | |
try { | |
result = await predict(query) | |
if (!result.trim().length) { | |
throw new Error("empty result!") | |
} | |
} catch (err) { | |
console.log(`prediction of the story failed, trying again..`) | |
try { | |
result = await predict(query+".") | |
if (!result.trim().length) { | |
throw new Error("empty result!") | |
} | |
} catch (err) { | |
console.error(`prediction of the story failed again!`) | |
throw new Error(`failed to generate the story ${err}`) | |
} | |
} | |
console.log("Raw response from LLM:", result) | |
let tmp = result // result.split("Caption:").pop() || result | |
tmp = tmp | |
.replaceAll("}}", "}") | |
.replaceAll("]]", "]") | |
.replaceAll(",,", ",") | |
try { | |
// we only keep what's after the first [ | |
let jsonOrNot = `[${tmp.split("[").pop() || ""}` | |
// and before the first ] | |
jsonOrNot = `${jsonOrNot.split("]").shift() || ""}]` | |
const jsonData = JSON.parse(jsonOrNot) as LLMResponse | |
const captions = jsonData.map(item => item.caption.trim()) | |
return captions.map(caption => caption.split(":").pop()?.trim() || "") | |
} catch (err) { | |
console.log(`failed to read LLM response: ${err}`) | |
// in case of failure, it might be because the LLM hallucinated a completely different response, | |
// such as markdown. There is no real solution.. but we can try a fallback: | |
const candidateList = ( | |
tmp.split("*") | |
.map(item => item.replaceAll("[", "[").replaceAll("]", "]").trim()) | |
) | |
return candidateList | |
} | |
} |