import streamlit as st
from PIL import Image
import os
import base64
import io
from dotenv import load_dotenv
from groq import Groq
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet
# ======================
# CONFIGURATION SETTINGS
# ======================
PAGE_CONFIG = {
"page_title": "Radiology Analyzer",
"page_icon": "🩺",
"layout": "wide",
"initial_sidebar_state": "expanded"
}
ALLOWED_FILE_TYPES = ['png', 'jpg', 'jpeg']
CSS_STYLES = """
"""
# ======================
# CORE FUNCTIONS
# ======================
def configure_application():
"""Initialize application settings and styling"""
st.set_page_config(**PAGE_CONFIG)
st.markdown(CSS_STYLES, unsafe_allow_html=True)
def initialize_api_client():
"""Create and validate Groq API client"""
load_dotenv()
api_key = os.getenv("GROQ_API_KEY")
if not api_key:
st.error("API key not found. Please verify .env configuration.")
st.stop()
return Groq(api_key=api_key)
def encode_logo(image_path):
"""Encode logo image to base64"""
try:
with open(image_path, "rb") as img_file:
return base64.b64encode(img_file.read()).decode("utf-8")
except FileNotFoundError:
st.error("Logo image not found! Using placeholder.")
return ""
def process_image_data(uploaded_file):
"""Convert image to base64 encoded string"""
try:
image = Image.open(uploaded_file)
buffer = io.BytesIO()
image.save(buffer, format=image.format)
return base64.b64encode(buffer.getvalue()).decode('utf-8'), image.format
except Exception as e:
st.error(f"Image processing error: {str(e)}")
return None, None
def generate_pdf_report(report_text):
"""Generate PDF document from report text"""
buffer = io.BytesIO()
doc = SimpleDocTemplate(buffer, pagesize=letter)
styles = getSampleStyleSheet()
story = []
# Add title
title = Paragraph("Radiology Report", styles['Title'])
story.append(title)
story.append(Spacer(1, 12))
# Add report content
content = Paragraph(report_text.replace('\n', '
'), styles['BodyText'])
story.append(content)
doc.build(story)
buffer.seek(0)
return buffer
def generate_radiology_report(uploaded_file, client):
"""Generate AI-powered radiology analysis"""
base64_image, img_format = process_image_data(uploaded_file)
if not base64_image:
return None
image_url = f"data:image/{img_format.lower()};base64,{base64_image}"
try:
response = client.chat.completions.create(
model="llama-3.2-11b-vision-preview",
messages=[{
"role": "user",
"content": [
{"type": "text", "text": (
"As an AI radiologist, provide a detailed structured report including: "
"1. Imaging modality identification\n2. Anatomical structures visualized\n"
"3. Abnormal findings description\n4. Differential diagnoses\n"
"5. Clinical correlation recommendations"
)},
{"type": "image_url", "image_url": {"url": image_url}},
]
}],
temperature=0.2,
max_tokens=400,
top_p=0.5
)
return response.choices[0].message.content
except Exception as e:
st.error(f"API communication error: {str(e)}")
return None
# ======================
# UI COMPONENTS
# ======================
def display_main_interface():
"""Render primary application interface"""
# Encode logo image
logo_b64 = encode_logo("src/radiology.png")
# Center the logo and title using HTML and CSS
st.markdown(
f"""
Radiology Analyzer
Advanced Medical Imaging Analysis