import streamlit as st from PIL import Image import os import base64 import io from dotenv import load_dotenv from groq import Groq from reportlab.lib.pagesizes import letter from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer from reportlab.lib.styles import getSampleStyleSheet # ====================== # CONFIGURATION SETTINGS # ====================== PAGE_CONFIG = { "page_title": "Radiology Analyzer", "page_icon": "🩺", "layout": "wide", "initial_sidebar_state": "expanded" } ALLOWED_FILE_TYPES = ['png', 'jpg', 'jpeg'] CSS_STYLES = """ """ # ====================== # CORE FUNCTIONS # ====================== def configure_application(): """Initialize application settings and styling""" st.set_page_config(**PAGE_CONFIG) st.markdown(CSS_STYLES, unsafe_allow_html=True) def initialize_api_client(): """Create and validate Groq API client""" load_dotenv() api_key = os.getenv("GROQ_API_KEY") if not api_key: st.error("API key not found. Please verify .env configuration.") st.stop() return Groq(api_key=api_key) def encode_logo(image_path): """Encode logo image to base64""" try: with open(image_path, "rb") as img_file: return base64.b64encode(img_file.read()).decode("utf-8") except FileNotFoundError: st.error("Logo image not found! Using placeholder.") return "" def process_image_data(uploaded_file): """Convert image to base64 encoded string""" try: image = Image.open(uploaded_file) buffer = io.BytesIO() image.save(buffer, format=image.format) return base64.b64encode(buffer.getvalue()).decode('utf-8'), image.format except Exception as e: st.error(f"Image processing error: {str(e)}") return None, None def generate_pdf_report(report_text): """Generate PDF document from report text""" buffer = io.BytesIO() doc = SimpleDocTemplate(buffer, pagesize=letter) styles = getSampleStyleSheet() story = [] # Add title title = Paragraph("Radiology Report", styles['Title']) story.append(title) story.append(Spacer(1, 12)) # Add report content content = Paragraph(report_text.replace('\n', '
'), styles['BodyText']) story.append(content) doc.build(story) buffer.seek(0) return buffer def generate_radiology_report(uploaded_file, client): """Generate AI-powered radiology analysis""" base64_image, img_format = process_image_data(uploaded_file) if not base64_image: return None image_url = f"data:image/{img_format.lower()};base64,{base64_image}" try: response = client.chat.completions.create( model="llama-3.2-11b-vision-preview", messages=[{ "role": "user", "content": [ {"type": "text", "text": ( "As an AI radiologist, provide a detailed structured report including: " "1. Imaging modality identification\n2. Anatomical structures visualized\n" "3. Abnormal findings description\n4. Differential diagnoses\n" "5. Clinical correlation recommendations" )}, {"type": "image_url", "image_url": {"url": image_url}}, ] }], temperature=0.2, max_tokens=400, top_p=0.5 ) return response.choices[0].message.content except Exception as e: st.error(f"API communication error: {str(e)}") return None # ====================== # UI COMPONENTS # ====================== def display_main_interface(): """Render primary application interface""" # Encode logo image logo_b64 = encode_logo("src/radiology.png") # Center the logo and title using HTML and CSS st.markdown( f"""

Radiology Analyzer

Advanced Medical Imaging Analysis

""", unsafe_allow_html=True ) st.markdown("---") # Action buttons col1, col2 = st.columns([1, 1]) with col1: if st.session_state.get('analysis_result'): pdf_report = generate_pdf_report(st.session_state.analysis_result) st.download_button( label="📄 Download PDF Report", data=pdf_report, file_name="radiology_report.pdf", mime="application/pdf", use_container_width=True, help="Download formal PDF version of the report", key="download_pdf" ) with col2: if st.button("Clear Analysis 🗑️", use_container_width=True, help="Remove current results"): st.session_state.pop('analysis_result') st.rerun() # Display analysis results if st.session_state.get('analysis_result'): st.markdown("### 🎯 Radiological Findings Report") st.markdown( f'
{st.session_state.analysis_result}
', unsafe_allow_html=True ) def render_sidebar(client): """Create sidebar interface elements""" with st.sidebar: st.divider() st.markdown("### Diagnostic Capabilities") st.markdown(""" - **Multi-Modality Analysis**: X-ray, MRI, CT, Ultrasound - **Pathology Detection**: Fractures, tumors, infections - **Comparative Analysis**: Track disease progression - **Structured Reporting**: Standardized output format - **Clinical Correlation**: Suggested next steps - **Disclaimer: This service does not provide medical advice, consult a doctor for analysis and treatment """) st.divider() st.subheader("Image Upload Section") uploaded_file = st.file_uploader( "Select Medical Image", type=ALLOWED_FILE_TYPES, help="Supported formats: PNG, JPG, JPEG" ) if uploaded_file: st.image(Image.open(uploaded_file), caption="Uploaded Medical Image", use_container_width=True) if st.button("Initiate Analysis 🔍", use_container_width=True): with st.spinner("Analyzing image. This may take 20-30 seconds..."): report = generate_radiology_report(uploaded_file, client) st.session_state.analysis_result = report st.rerun() # ====================== # APPLICATION ENTRYPOINT # ====================== def main(): """Primary application controller""" configure_application() groq_client = initialize_api_client() display_main_interface() render_sidebar(groq_client) if __name__ == "__main__": main()