File size: 41,988 Bytes
7e8c144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ce0d3e
 
 
 
7e8c144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
#!/usr/bin/env python3
# Std Lib Imports
import argparse
import atexit
import json
import logging
import os
import signal
import sys
import time
import webbrowser
#
# Local Library Imports
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 'App_Function_Libraries')))
from App_Function_Libraries.Book_Ingestion_Lib import ingest_folder, ingest_text_file
from App_Function_Libraries.Chunk_Lib import  semantic_chunk_long_file#, rolling_summarize_function,
from App_Function_Libraries.Gradio_Related import launch_ui
from App_Function_Libraries.Local_LLM_Inference_Engine_Lib import cleanup_process, local_llm_function
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_llama, summarize_with_kobold, \
    summarize_with_oobabooga, summarize_with_tabbyapi, summarize_with_vllm, summarize_with_local_llm
from App_Function_Libraries.Summarization_General_Lib import summarize_with_openai, summarize_with_anthropic, \
    summarize_with_cohere, summarize_with_groq, summarize_with_openrouter, summarize_with_deepseek, \
    summarize_with_huggingface, perform_transcription, perform_summarization
from App_Function_Libraries.Audio_Transcription_Lib import convert_to_wav, speech_to_text
from App_Function_Libraries.Local_File_Processing_Lib import read_paths_from_file, process_local_file
from App_Function_Libraries.SQLite_DB import add_media_to_database, is_valid_url
from App_Function_Libraries.System_Checks_Lib import cuda_check, platform_check, check_ffmpeg
from App_Function_Libraries.Utils import load_and_log_configs, sanitize_filename, create_download_directory, extract_text_from_segments
from App_Function_Libraries.Video_DL_Ingestion_Lib import download_video, extract_video_info
#
# 3rd-Party Module Imports
import requests
# OpenAI Tokenizer support
#
# Other Tokenizers
#
#######################
# Logging Setup
#
log_level = "DEBUG"
logging.basicConfig(level=getattr(logging, log_level), format='%(asctime)s - %(levelname)s - %(message)s')
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
#
#############
# Global variables setup
#custom_prompt_input = ("Above is the transcript of a video. Please read through the transcript carefully. Identify the "
#"main topics that are discussed over the course of the transcript. Then, summarize the key points about each main "
#"topic in bullet points. The bullet points should cover the key information conveyed about each topic in the video, "
#"but should be much shorter than the full transcript. Please output your bullet point summary inside <bulletpoints> "
#"tags.")
#
# Global variables
whisper_models = ["small", "medium", "small.en", "medium.en", "medium", "large", "large-v1", "large-v2", "large-v3",
                  "distil-large-v2", "distil-medium.en", "distil-small.en"]
server_mode = False
share_public = False
#
#
#######################

#######################
# Function Sections
#
abc_xyz = """
    Database Setup
    Config Loading
    System Checks
    DataBase Functions
    Processing Paths and local file handling
    Video Download/Handling
    Audio Transcription
    Diarization
    Chunking-related Techniques & Functions
    Tokenization-related Techniques & Functions
    Summarizers
    Gradio UI
    Main
"""
#
#
#######################
#######################
#
#       TL/DW: Too Long Didn't Watch
#
#  Project originally created by https://github.com/the-crypt-keeper
#  Modifications made by https://github.com/rmusser01
#  All credit to the original authors, I've just glued shit together.
#
#
# Usage:
#
#   Download Audio only from URL -> Transcribe audio:
#       python summarize.py https://www.youtube.com/watch?v=4nd1CDZP21s`
#
#   Download Audio+Video from URL -> Transcribe audio from Video:**
#       python summarize.py -v https://www.youtube.com/watch?v=4nd1CDZP21s`
#
#   Download Audio only from URL -> Transcribe audio -> Summarize using (`anthropic`/`cohere`/`openai`/`llama` (llama.cpp)/`ooba` (oobabooga/text-gen-webui)/`kobold` (kobold.cpp)/`tabby` (Tabbyapi)) API:**
#       python summarize.py -v https://www.youtube.com/watch?v=4nd1CDZP21s -api <your choice of API>` - Make sure to put your API key into `config.txt` under the appropriate API variable
#
#   Download Audio+Video from a list of videos in a text file (can be file paths or URLs) and have them all summarized:**
#       python summarize.py ./local/file_on_your/system --api_name <API_name>`
#
#   Run it as a WebApp**
#       python summarize.py -gui` - This requires you to either stuff your API keys into the `config.txt` file, or pass them into the app every time you want to use it.
#           Can be helpful for setting up a shared instance, but not wanting people to perform inference on your server.
#
#######################


#######################
# Random issues I've encountered and how I solved them:
#   1. Something about cuda nn library missing, even though cuda is installed...
#       https://github.com/tensorflow/tensorflow/issues/54784 - Basically, installing zlib made it go away. idk.
#       Or https://github.com/SYSTRAN/faster-whisper/issues/85
#
#   2. ERROR: Could not install packages due to an OSError: [WinError 2] The system cannot find the file specified: 'C:\\Python312\\Scripts\\dateparser-download.exe' -> 'C:\\Python312\\Scripts\\dateparser-download.exe.deleteme'
#       Resolved through adding --user to the pip install command
#
#   3. Windows: Could not locate cudnn_ops_infer64_8.dll. Please make sure it is in your library path!
#
#   4.
#
#   5.
#
#
#
#######################


#######################
# DB Setup

# Handled by SQLite_DB.py

#######################


#######################
# Config loading
#
# 1.
# 2.
#
#
#######################


#######################
# System Startup Notice
#

# Dirty hack - sue me. - FIXME - fix this...
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'

whisper_models = ["small", "medium", "small.en", "medium.en", "medium", "large", "large-v1", "large-v2", "large-v3",
                  "distil-large-v2", "distil-medium.en", "distil-small.en"]
source_languages = {
    "en": "English",
    "zh": "Chinese",
    "de": "German",
    "es": "Spanish",
    "ru": "Russian",
    "ko": "Korean",
    "fr": "French"
}
source_language_list = [key[0] for key in source_languages.items()]


def print_hello():
    print(r"""_____  _          ________  _    _                                 
|_   _|| |        / /|  _  \| |  | | _                              
  | |  | |       / / | | | || |  | |(_)                             
  | |  | |      / /  | | | || |/\| |                                
  | |  | |____ / /   | |/ / \  /\  / _                              
  \_/  \_____//_/    |___/   \/  \/ (_)                             


 _                   _                                              
| |                 | |                                             
| |_   ___    ___   | |  ___   _ __    __ _                         
| __| / _ \  / _ \  | | / _ \ | '_ \  / _` |                        
| |_ | (_) || (_) | | || (_) || | | || (_| | _                      
 \__| \___/  \___/  |_| \___/ |_| |_| \__, |( )                     
                                       __/ ||/                      
                                      |___/                         
     _  _      _         _  _                      _          _     
    | |(_)    | |       ( )| |                    | |        | |    
  __| | _   __| | _ __  |/ | |_  __      __  __ _ | |_   ___ | |__  
 / _` || | / _` || '_ \    | __| \ \ /\ / / / _` || __| / __|| '_ \ 
| (_| || || (_| || | | |   | |_   \ V  V / | (_| || |_ | (__ | | | |
 \__,_||_| \__,_||_| |_|    \__|   \_/\_/   \__,_| \__| \___||_| |_|
""")
    time.sleep(1)
    return


#
#
#######################


#######################
# System Check Functions
#
# 1. platform_check()
# 2. cuda_check()
# 3. decide_cpugpu()
# 4. check_ffmpeg()
# 5. download_ffmpeg()
#
#######################


#######################
# DB Functions
#
#     create_tables()
#     add_keyword()
#     delete_keyword()
#     add_keyword()
#     add_media_with_keywords()
#     search_db()
#     format_results()
#     search_and_display()
#     export_to_csv()
#     is_valid_url()
#     is_valid_date()
#
########################################################################################################################


########################################################################################################################
# Processing Paths and local file handling
#
# Function List
# 1. read_paths_from_file(file_path)
# 2. process_path(path)
# 3. process_local_file(file_path)
# 4. read_paths_from_file(file_path: str) -> List[str]
#
#
########################################################################################################################


#######################################################################################################################
# Online Article Extraction / Handling
#
# Function List
# 1. get_page_title(url)
# 2. get_article_text(url)
# 3. get_article_title(article_url_arg)
#
#
#######################################################################################################################


#######################################################################################################################
# Video Download/Handling
# Video-DL-Ingestion-Lib
#
# Function List
# 1. get_video_info(url)
# 2. create_download_directory(title)
# 3. sanitize_filename(title)
# 4. normalize_title(title)
# 5. get_youtube(video_url)
# 6. get_playlist_videos(playlist_url)
# 7. download_video(video_url, download_path, info_dict, download_video_flag)
# 8. save_to_file(video_urls, filename)
# 9. save_summary_to_file(summary, file_path)
# 10. process_url(url, num_speakers, whisper_model, custom_prompt, offset, api_name, api_key, vad_filter, download_video, download_audio, rolling_summarization, detail_level, question_box, keywords, ) # FIXME - UPDATE
#
#
#######################################################################################################################


#######################################################################################################################
# Audio Transcription
#
# Function List
# 1. convert_to_wav(video_file_path, offset=0, overwrite=False)
# 2. speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False)
#
#
#######################################################################################################################


#######################################################################################################################
# Diarization
#
# Function List 1. speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding",
#                                   embedding_size=512, num_speakers=0)
#
#
#######################################################################################################################


#######################################################################################################################
# Chunking-related Techniques & Functions
#
#
# FIXME
#
#
#######################################################################################################################


#######################################################################################################################
# Tokenization-related Functions
#
#

# FIXME

#
#
#######################################################################################################################


#######################################################################################################################
# Website-related Techniques & Functions
#
#

#
#
#######################################################################################################################


#######################################################################################################################
# Summarizers
#
# Function List
# 1. extract_text_from_segments(segments: List[Dict]) -> str
# 2. summarize_with_openai(api_key, file_path, custom_prompt_arg)
# 3. summarize_with_anthropic(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5)
# 4. summarize_with_cohere(api_key, file_path, model, custom_prompt_arg)
# 5. summarize_with_groq(api_key, file_path, model, custom_prompt_arg)
#
#################################
# Local Summarization
#
# Function List
#
# 1. summarize_with_local_llm(file_path, custom_prompt_arg)
# 2. summarize_with_llama(api_url, file_path, token, custom_prompt)
# 3. summarize_with_kobold(api_url, file_path, kobold_api_token, custom_prompt)
# 4. summarize_with_oobabooga(api_url, file_path, ooba_api_token, custom_prompt)
# 5. summarize_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg)
# 6. summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt)
# 7. save_summary_to_file(summary, file_path)
#
#######################################################################################################################


#######################################################################################################################
# Summarization with Detail
#

# FIXME - see 'Old_Chunking_Lib.py'

#
#
#######################################################################################################################


#######################################################################################################################
# Gradio UI
#
#
#
#
#
#################################################################################################################
#
#######################################################################################################################
# Local LLM Setup / Running
#
# Function List
# 1. download_latest_llamafile(repo, asset_name_prefix, output_filename)
# 2. download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5)
# 3. verify_checksum(file_path, expected_checksum)
# 4. cleanup_process()
# 5. signal_handler(sig, frame)
# 6. local_llm_function()
# 7. launch_in_new_terminal_windows(executable, args)
# 8. launch_in_new_terminal_linux(executable, args)
# 9. launch_in_new_terminal_mac(executable, args)
#
#
#######################################################################################################################


#######################################################################################################################
# Helper Functions for Main() & process_url()
#
#
#
#######################################################################################################################


######################################################################################################################
# Main()
#

def main(input_path, api_name=None, api_key=None,
         num_speakers=2,
         whisper_model="small.en",
         offset=0,
         vad_filter=False,
         download_video_flag=False,
         custom_prompt=None,
         overwrite=False,
         rolling_summarization=False,
         detail=0.01,
         keywords=None,
         llm_model=None,
         time_based=False,
         set_chunk_txt_by_words=False,
         set_max_txt_chunk_words=0,
         set_chunk_txt_by_sentences=False,
         set_max_txt_chunk_sentences=0,
         set_chunk_txt_by_paragraphs=False,
         set_max_txt_chunk_paragraphs=0,
         set_chunk_txt_by_tokens=False,
         set_max_txt_chunk_tokens=0,
         ingest_text_file=False,
         chunk=False,
         max_chunk_size=2000,
         chunk_overlap=100,
         chunk_unit='tokens',
         summarize_chunks=None,
         diarize=False
         ):
    global detail_level_number, summary, audio_file, transcription_text, info_dict

    detail_level = detail

    print(f"Keywords: {keywords}")

    if not input_path:
        return []

    start_time = time.monotonic()
    paths = [input_path] if not os.path.isfile(input_path) else read_paths_from_file(input_path)
    results = []

    for path in paths:
        try:
            if path.startswith('http'):
                info_dict, title = extract_video_info(path)
                download_path = create_download_directory(title)
                video_path = download_video(path, download_path, info_dict, download_video_flag)

                if video_path:
                    if diarize:
                        audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter, diarize=True)
                        transcription_text = {'audio_file': audio_file, 'transcription': segments}
                    else:
                        audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter)
                        transcription_text = {'audio_file': audio_file, 'transcription': segments}

                    # FIXME rolling summarization
                    if rolling_summarization == True:
                        pass
                    #     text = extract_text_from_segments(segments)
                    #     detail = detail_level
                    #     additional_instructions = custom_prompt_input
                    #     chunk_text_by_words = set_chunk_txt_by_words
                    #     max_words = set_max_txt_chunk_words
                    #     chunk_text_by_sentences = set_chunk_txt_by_sentences
                    #     max_sentences = set_max_txt_chunk_sentences
                    #     chunk_text_by_paragraphs = set_chunk_txt_by_paragraphs
                    #     max_paragraphs = set_max_txt_chunk_paragraphs
                    #     chunk_text_by_tokens = set_chunk_txt_by_tokens
                    #     max_tokens = set_max_txt_chunk_tokens
                    #     # FIXME
                    #     summarize_recursively = rolling_summarization
                    #     verbose = False
                    #     model = None
                    #     summary = rolling_summarize_function(text, detail, api_name, api_key, model, custom_prompt_input,
                    #                                          chunk_text_by_words,
                    #                                          max_words, chunk_text_by_sentences,
                    #                                          max_sentences, chunk_text_by_paragraphs,
                    #                                          max_paragraphs, chunk_text_by_tokens,
                    #                                          max_tokens, summarize_recursively, verbose
                    #                                          )


                    elif api_name:
                        summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key)
                    else:
                        summary = None

                    if summary:
                        # Save the summary file in the download_path directory
                        summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt")
                        with open(summary_file_path, 'w') as file:
                            file.write(summary)

                    add_media_to_database(path, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model)
                else:
                    logging.error(f"Failed to download video: {path}")

            # FIXME - make sure this doesn't break ingesting multiple videos vs multiple text files
            # FIXME - Need to update so that chunking is fully handled.
            elif chunk and path.lower().endswith('.txt'):
                chunks = semantic_chunk_long_file(path, max_chunk_size, chunk_overlap)
                if chunks:
                    chunks_data = {
                        "file_path": path,
                        "chunk_unit": chunk_unit,
                        "max_chunk_size": max_chunk_size,
                        "chunk_overlap": chunk_overlap,
                        "chunks": []
                    }
                    summaries_data = {
                        "file_path": path,
                        "summarization_method": summarize_chunks,
                        "summaries": []
                    }

                    for i, chunk_text in enumerate(chunks):
                        chunk_info = {
                            "chunk_id": i + 1,
                            "text": chunk_text
                        }
                        chunks_data["chunks"].append(chunk_info)

                        if summarize_chunks:
                            summary = None
                            if summarize_chunks == 'openai':
                                summary = summarize_with_openai(api_key, chunk_text, custom_prompt)
                            elif summarize_chunks == 'anthropic':
                                summary = summarize_with_anthropic(api_key, chunk_text, custom_prompt)
                            elif summarize_chunks == 'cohere':
                                summary = summarize_with_cohere(api_key, chunk_text, custom_prompt)
                            elif summarize_chunks == 'groq':
                                summary = summarize_with_groq(api_key, chunk_text, custom_prompt)
                            elif summarize_chunks == 'local-llm':
                                summary = summarize_with_local_llm(chunk_text, custom_prompt)
                            # FIXME - Add more summarization methods as needed

                            if summary:
                                summary_info = {
                                    "chunk_id": i + 1,
                                    "summary": summary
                                }
                                summaries_data["summaries"].append(summary_info)
                            else:
                                logging.warning(f"Failed to generate summary for chunk {i + 1}")

                    # Save chunks to a single JSON file
                    chunks_file_path = f"{path}_chunks.json"
                    with open(chunks_file_path, 'w', encoding='utf-8') as f:
                        json.dump(chunks_data, f, ensure_ascii=False, indent=2)
                    logging.info(f"All chunks saved to {chunks_file_path}")

                    # Save summaries to a single JSON file (if summarization was performed)
                    if summarize_chunks:
                        summaries_file_path = f"{path}_summaries.json"
                        with open(summaries_file_path, 'w', encoding='utf-8') as f:
                            json.dump(summaries_data, f, ensure_ascii=False, indent=2)
                        logging.info(f"All summaries saved to {summaries_file_path}")

                    logging.info(f"File {path} chunked into {len(chunks)} parts using {chunk_unit} as the unit.")
                else:
                    logging.error(f"Failed to chunk file {path}")

            # Handle downloading of URLs from a text file or processing local video/audio files
            else:
                download_path, info_dict, urls_or_media_file = process_local_file(path)
                if isinstance(urls_or_media_file, list):
                    # Text file containing URLs
                    for url in urls_or_media_file:
                        for item in urls_or_media_file:
                            if item.startswith(('http://', 'https://')):
                                info_dict, title = extract_video_info(url)
                                download_path = create_download_directory(title)
                                video_path = download_video(url, download_path, info_dict, download_video_flag)

                                if video_path:
                                    if diarize:
                                        audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter, diarize=True)
                                    else:
                                        audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter)

                                    transcription_text = {'audio_file': audio_file, 'transcription': segments}
                                    if rolling_summarization:
                                        text = extract_text_from_segments(segments)
                                        # FIXME
                                        #summary = summarize_with_detail_openai(text, detail=detail)
                                    elif api_name:
                                        summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key)
                                    else:
                                        summary = None

                                    if summary:
                                        # Save the summary file in the download_path directory
                                        summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt")
                                        with open(summary_file_path, 'w') as file:
                                            file.write(summary)

                                    add_media_to_database(url, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model)
                                else:
                                    logging.error(f"Failed to download video: {url}")

                else:
                    # Video or audio or txt file
                    media_path = urls_or_media_file

                    if media_path.lower().endswith(('.txt', '.md')):
                        if media_path.lower().endswith('.txt'):
                            # Handle text file ingestion
                            result = ingest_text_file(media_path)
                            logging.info(result)
                    elif media_path.lower().endswith(('.mp4', '.avi', '.mov')):
                        if diarize:
                            audio_file, segments = perform_transcription(media_path, offset, whisper_model, vad_filter, diarize=True)
                        else:
                            audio_file, segments = perform_transcription(media_path, offset, whisper_model, vad_filter)
                    elif media_path.lower().endswith(('.wav', '.mp3', '.m4a')):
                        if diarize:
                            segments = speech_to_text(media_path, whisper_model=whisper_model, vad_filter=vad_filter, diarize=True)
                        else:
                            segments = speech_to_text(media_path, whisper_model=whisper_model, vad_filter=vad_filter)
                    else:
                        logging.error(f"Unsupported media file format: {media_path}")
                        continue

                    transcription_text = {'media_path': path, 'audio_file': media_path, 'transcription': segments}

                    # FIXME
                    if rolling_summarization:
                    #     text = extract_text_from_segments(segments)
                    #     summary = summarize_with_detail_openai(text, detail=detail)
                        pass
                    elif api_name:
                        summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key)
                    else:
                        summary = None

                    if summary:
                        # Save the summary file in the download_path directory
                        summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt")
                        with open(summary_file_path, 'w') as file:
                            file.write(summary)

                    add_media_to_database(path, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model)

        except Exception as e:
            logging.error(f"Error processing {path}: {str(e)}")
            continue

    return transcription_text


def signal_handler(sig, frame):
    logging.info('Signal handler called with signal: %s', sig)
    cleanup_process()
    sys.exit(0)


############################## MAIN ##############################
#
#

if __name__ == "__main__":
    # Register signal handlers
    signal.signal(signal.SIGINT, signal_handler)
    signal.signal(signal.SIGTERM, signal_handler)

    # Logging setup
    logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

    # Load Config
    loaded_config_data = load_and_log_configs()

    if loaded_config_data:
        logging.info("Main: Configuration loaded successfully")
        # You can access the configuration data like this:
        # print(f"OpenAI API Key: {config_data['api_keys']['openai']}")
        # print(f"Anthropic Model: {config_data['models']['anthropic']}")
        # print(f"Kobold API IP: {config_data['local_apis']['kobold']['ip']}")
        # print(f"Output Path: {config_data['output_path']}")
        # print(f"Processing Choice: {config_data['processing_choice']}")
    else:
        print("Failed to load configuration")

    # Print ascii_art
    print_hello()

    transcription_text = None

    parser = argparse.ArgumentParser(
        description='Transcribe and summarize videos.',
        epilog='''
Sample commands:
    1. Simple Sample command structure:
        summarize.py <path_to_video> -api openai -k tag_one tag_two tag_three

    2. Rolling Summary Sample command structure:
        summarize.py <path_to_video> -api openai -prompt "custom_prompt_goes_here-is-appended-after-transcription" -roll -detail 0.01 -k tag_one tag_two tag_three

    3. FULL Sample command structure:
        summarize.py <path_to_video> -api openai -ns 2 -wm small.en -off 0 -vad -log INFO -prompt "custom_prompt" -overwrite -roll -detail 0.01 -k tag_one tag_two tag_three

    4. Sample command structure for UI:
        summarize.py -gui -log DEBUG
        ''',
        formatter_class=argparse.RawTextHelpFormatter
    )
    parser.add_argument('input_path', type=str, help='Path or URL of the video', nargs='?')
    parser.add_argument('-v', '--video', action='store_true', help='Download the video instead of just the audio')
    parser.add_argument('-api', '--api_name', type=str, help='API name for summarization (optional)')
    parser.add_argument('-key', '--api_key', type=str, help='API key for summarization (optional)')
    parser.add_argument('-ns', '--num_speakers', type=int, default=2, help='Number of speakers (default: 2)')
    parser.add_argument('-wm', '--whisper_model', type=str, default='small',
                        help='Whisper model (default: small)| Options: tiny.en, tiny, base.en, base, small.en, small, medium.en, '
                             'medium, large-v1, large-v2, large-v3, large, distil-large-v2, distil-medium.en, '
                             'distil-small.en')
    parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)')
    parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter')
    parser.add_argument('-log', '--log_level', type=str, default='INFO',
                        choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: INFO)')
    parser.add_argument('-gui', '--user_interface', action='store_true', default=True, help="Launch the Gradio user interface")
    parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode')
    parser.add_argument('-prompt', '--custom_prompt', type=str,
                        help='Pass in a custom prompt to be used in place of the existing one.\n (Probably should just '
                             'modify the script itself...)')
    parser.add_argument('-overwrite', '--overwrite', action='store_true', help='Overwrite existing files')
    parser.add_argument('-roll', '--rolling_summarization', action='store_true', help='Enable rolling summarization')
    parser.add_argument('-detail', '--detail_level', type=float, help='Mandatory if rolling summarization is enabled, '
                                                                      'defines the chunk  size.\n Default is 0.01(lots '
                                                                      'of chunks) -> 1.00 (few chunks)\n Currently '
                                                                      'only OpenAI works. ',
                        default=0.01, )
    parser.add_argument('-model', '--llm_model', type=str, default='',
                        help='Model to use for LLM summarization (only used for vLLM/TabbyAPI)')
    parser.add_argument('-k', '--keywords', nargs='+', default=['cli_ingest_no_tag'],
                        help='Keywords for tagging the media, can use multiple separated by spaces (default: cli_ingest_no_tag)')
    parser.add_argument('--log_file', type=str, help='Where to save logfile (non-default)')
    parser.add_argument('--local_llm', action='store_true',
                        help="Use a local LLM from the script(Downloads llamafile from github and 'mistral-7b-instruct-v0.2.Q8' - 8GB model from Huggingface)")
    parser.add_argument('--server_mode', action='store_true',
                        help='Run in server mode (This exposes the GUI/Server to the network)')
    parser.add_argument('--share_public', type=int, default=7860,
                        help="This will use Gradio's built-in ngrok tunneling to share the server publicly on the internet. Specify the port to use (default: 7860)")
    parser.add_argument('--port', type=int, default=7860, help='Port to run the server on')
    parser.add_argument('--ingest_text_file', action='store_true',
                        help='Ingest .txt files as content instead of treating them as URL lists')
    parser.add_argument('--text_title', type=str, help='Title for the text file being ingested')
    parser.add_argument('--text_author', type=str, help='Author of the text file being ingested')
    parser.add_argument('--diarize', action='store_true', help='Enable speaker diarization')
    # parser.add_argument('--offload', type=int, default=20, help='Numbers of layers to offload to GPU for Llamafile usage')
    # parser.add_argument('-o', '--output_path', type=str, help='Path to save the output file')

    args = parser.parse_args()

    # Set Chunking values/variables
    set_chunk_txt_by_words = False
    set_max_txt_chunk_words = 0
    set_chunk_txt_by_sentences = False
    set_max_txt_chunk_sentences = 0
    set_chunk_txt_by_paragraphs = False
    set_max_txt_chunk_paragraphs = 0
    set_chunk_txt_by_tokens = False
    set_max_txt_chunk_tokens = 0

    if args.share_public:
        share_public = args.share_public
    else:
        share_public = None
    if args.server_mode:

        server_mode = args.server_mode
    else:
        server_mode = None
    if args.server_mode is True:
        server_mode = True
    if args.port:
        server_port = args.port
    else:
        server_port = None

    ########## Logging setup
    logger = logging.getLogger()
    logger.setLevel(getattr(logging, args.log_level))

    # Create console handler
    console_handler = logging.StreamHandler()
    console_handler.setLevel(getattr(logging, args.log_level))
    console_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
    console_handler.setFormatter(console_formatter)

    if args.log_file:
        # Create file handler
        file_handler = logging.FileHandler(args.log_file)
        file_handler.setLevel(getattr(logging, args.log_level))
        file_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
        file_handler.setFormatter(file_formatter)
        logger.addHandler(file_handler)
        logger.info(f"Log file created at: {args.log_file}")

    # Check if the user wants to use the local LLM from the script
    local_llm = args.local_llm
    logging.info(f'Local LLM flag: {local_llm}')

    # Check if the user wants to ingest a text file (singular or multiple from a folder)
    if args.input_path is not None:
        if os.path.isdir(args.input_path) and args.ingest_text_file:
            results = ingest_folder(args.input_path, keywords=args.keywords)
            for result in results:
                print(result)
        elif args.input_path.lower().endswith('.txt') and args.ingest_text_file:
            result = ingest_text_file(args.input_path, title=args.text_title, author=args.text_author,
                                      keywords=args.keywords)
            print(result)
        sys.exit(0)

    # Launch the GUI
    # This is huggingface so: 
    if args.user_interface:
        if local_llm:
            local_llm_function()
            time.sleep(2)
            webbrowser.open_new_tab('http://127.0.0.1:7860')
        launch_ui()
    elif not args.input_path:
        parser.print_help()
        sys.exit(1)

    else:
        logging.info('Starting the transcription and summarization process.')
        logging.info(f'Input path: {args.input_path}')
        logging.info(f'API Name: {args.api_name}')
        logging.info(f'Number of speakers: {args.num_speakers}')
        logging.info(f'Whisper model: {args.whisper_model}')
        logging.info(f'Offset: {args.offset}')
        logging.info(f'VAD filter: {args.vad_filter}')
        logging.info(f'Log Level: {args.log_level}')
        logging.info(f'Demo Mode: {args.demo_mode}')
        logging.info(f'Custom Prompt: {args.custom_prompt}')
        logging.info(f'Overwrite: {args.overwrite}')
        logging.info(f'Rolling Summarization: {args.rolling_summarization}')
        logging.info(f'User Interface: {args.user_interface}')
        logging.info(f'Video Download: {args.video}')
        # logging.info(f'Save File location: {args.output_path}')
        # logging.info(f'Log File location: {args.log_file}')

        global api_name
        api_name = args.api_name

    ########## Custom Prompt setup
    custom_prompt_input = args.custom_prompt

    if not args.custom_prompt:
        logging.debug("No custom prompt defined, will use default")
        args.custom_prompt_input = (
            "\n\nabove is the transcript of a video. "
            "Please read through the transcript carefully. Identify the main topics that are "
            "discussed over the course of the transcript. Then, summarize the key points about each "
            "main topic in a concise bullet point. The bullet points should cover the key "
            "information conveyed about each topic in the video, but should be much shorter than "
            "the full transcript. Please output your bullet point summary inside <bulletpoints> "
            "tags."
        )
        print("No custom prompt defined, will use default")

        custom_prompt_input = args.custom_prompt
    else:
        logging.debug(f"Custom prompt defined, will use \n\nf{custom_prompt_input} \n\nas the prompt")
        print(f"Custom Prompt has been defined. Custom prompt: \n\n {args.custom_prompt}")

        
        summary = None  # Initialize to ensure it's always defined
        if args.detail_level == None:
            args.detail_level = 0.01

        # FIXME
        # if args.api_name and args.rolling_summarization and any(
        #         key.startswith(args.api_name) and value is not None for key, value in api_keys.items()):
        #     logging.info(f'MAIN: API used: {args.api_name}')
        #     logging.info('MAIN: Rolling Summarization will be performed.')

        elif args.api_name:
            logging.info(f'MAIN: API used: {args.api_name}')
            logging.info('MAIN: Summarization (not rolling) will be performed.')

        else:
            logging.info('No API specified. Summarization will not be performed.')

        logging.debug("Platform check being performed...")
        platform_check()
        logging.debug("CUDA check being performed...")
        cuda_check()
        processing_choice = "cpu"
        logging.debug("ffmpeg check being performed...")
        check_ffmpeg()
        # download_ffmpeg()

        llm_model = args.llm_model or None
        # FIXME - dirty hack
        args.time_based = False

        try:
            results = main(args.input_path, api_name=args.api_name, api_key=args.api_key,
                           num_speakers=args.num_speakers, whisper_model=args.whisper_model, offset=args.offset,
                           vad_filter=args.vad_filter, download_video_flag=args.video, custom_prompt=args.custom_prompt_input,
                           overwrite=args.overwrite, rolling_summarization=args.rolling_summarization,
                           detail=args.detail_level, keywords=args.keywords, llm_model=args.llm_model,
                           time_based=args.time_based, set_chunk_txt_by_words=set_chunk_txt_by_words,
                           set_max_txt_chunk_words=set_max_txt_chunk_words,
                           set_chunk_txt_by_sentences=set_chunk_txt_by_sentences,
                           set_max_txt_chunk_sentences=set_max_txt_chunk_sentences,
                           set_chunk_txt_by_paragraphs=set_chunk_txt_by_paragraphs,
                           set_max_txt_chunk_paragraphs=set_max_txt_chunk_paragraphs,
                           set_chunk_txt_by_tokens=set_chunk_txt_by_tokens,
                           set_max_txt_chunk_tokens=set_max_txt_chunk_tokens)

            logging.info('Transcription process completed.')
            atexit.register(cleanup_process)
        except Exception as e:
            logging.error('An error occurred during the transcription process.')
            logging.error(str(e))
            sys.exit(1)

        finally:
            cleanup_process()