File size: 27,460 Bytes
ed28876 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
# Summarization_General_Lib.py
#########################################
# General Summarization Library
# This library is used to perform summarization.
#
####
####################
# Function List
#
# 1. extract_text_from_segments(segments: List[Dict]) -> str
# 2. chat_with_openai(api_key, file_path, custom_prompt_arg)
# 3. chat_with_anthropic(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5)
# 4. chat_with_cohere(api_key, file_path, model, custom_prompt_arg)
# 5. chat_with_groq(api_key, input_data, custom_prompt_arg, system_prompt=None):
# 6. chat_with_openrouter(api_key, input_data, custom_prompt_arg, system_prompt=None)
# 7. chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None)
# 8. chat_with_deepseek(api_key, input_data, custom_prompt_arg, system_prompt=None)
# 9. chat_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions", system_prompt=None)
#
#
####################
import json
# Import necessary libraries
import os
import logging
import time
import requests
import configparser
# Import 3rd-Party Libraries
from openai import OpenAI
from requests import RequestException
# Import Local libraries
from App_Function_Libraries.Local_Summarization_Lib import openai_api_key, client
from App_Function_Libraries.Utils import load_and_log_configs
#
#######################################################################################################################
# Function Definitions
#
def extract_text_from_segments(segments):
logging.debug(f"Segments received: {segments}")
logging.debug(f"Type of segments: {type(segments)}")
text = ""
if isinstance(segments, list):
for segment in segments:
logging.debug(f"Current segment: {segment}")
logging.debug(f"Type of segment: {type(segment)}")
if 'Text' in segment:
text += segment['Text'] + " "
else:
logging.warning(f"Skipping segment due to missing 'Text' key: {segment}")
else:
logging.warning(f"Unexpected type of 'segments': {type(segments)}")
return text.strip()
def chat_with_openai(api_key, input_data, custom_prompt_arg, system_prompt=None):
loaded_config_data = load_and_log_configs()
try:
# API key validation
if api_key is None or api_key.strip() == "":
logging.info("OpenAI: API key not provided as parameter")
logging.info("OpenAI: Attempting to use API key from config file")
api_key = loaded_config_data['api_keys']['openai']
if api_key is None or api_key.strip() == "":
logging.error("OpenAI: API key not found or is empty")
return "OpenAI: API Key Not Provided/Found in Config file or is empty"
logging.debug(f"OpenAI: Using API Key: {api_key[:5]}...{api_key[-5:]}")
logging.debug("OpenAI: Using provided string data for chat input")
data = input_data
logging.debug(f"OpenAI: Loaded data: {data}")
logging.debug(f"OpenAI: Type of data: {type(data)}")
if system_prompt is not None:
logging.debug(f"OpenAI: Using provided system prompt:\n\n {system_prompt}")
pass
else:
system_prompt = "You are a helpful assistant"
logging.debug(f"OpenAI: Using default system prompt:\n\n {system_prompt}")
openai_model = loaded_config_data['models']['openai'] or "gpt-4o"
headers = {
'Authorization': f'Bearer {api_key}',
'Content-Type': 'application/json'
}
logging.debug(
f"OpenAI API Key: {openai_api_key[:5]}...{openai_api_key[-5:] if openai_api_key else None}")
logging.debug("openai: Preparing data + prompt for submittal")
openai_prompt = f"{data} \n\n\n\n{custom_prompt_arg}"
data = {
"model": openai_model,
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": openai_prompt}
],
"max_tokens": 4096,
"temperature": 0.1
}
logging.debug("openai: Posting request")
response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data)
if response.status_code == 200:
response_data = response.json()
if 'choices' in response_data and len(response_data['choices']) > 0:
chat_response = response_data['choices'][0]['message']['content'].strip()
logging.debug("openai: Chat Sent successfully")
return chat_response
else:
logging.warning("openai: Chat response not found in the response data")
return "openai: Chat not available"
else:
logging.error(f"openai: Chat request failed with status code {response.status_code}")
logging.error(f"openai: Error response: {response.text}")
return f"openai: Failed to process chat request. Status code: {response.status_code}"
except Exception as e:
logging.error(f"openai: Error in processing: {str(e)}", exc_info=True)
return f"openai: Error occurred while processing chat request: {str(e)}"
def chat_with_anthropic(api_key, input_data, model, custom_prompt_arg, max_retries=3, retry_delay=5, system_prompt=None):
try:
loaded_config_data = load_and_log_configs()
global anthropic_api_key
# API key validation
if api_key is None:
logging.info("Anthropic: API key not provided as parameter")
logging.info("Anthropic: Attempting to use API key from config file")
anthropic_api_key = loaded_config_data['api_keys']['anthropic']
if api_key is None or api_key.strip() == "":
logging.error("Anthropic: API key not found or is empty")
return "Anthropic: API Key Not Provided/Found in Config file or is empty"
logging.debug(f"Anthropic: Using API Key: {api_key[:5]}...{api_key[-5:]}")
if system_prompt is not None:
logging.debug("Anthropic: Using provided system prompt")
pass
else:
system_prompt = "You are a helpful assistant"
logging.debug(f"AnthropicAI: Loaded data: {input_data}")
logging.debug(f"AnthropicAI: Type of data: {type(input_data)}")
anthropic_model = loaded_config_data['models']['anthropic']
headers = {
'x-api-key': anthropic_api_key,
'anthropic-version': '2023-06-01',
'Content-Type': 'application/json'
}
anthropic_user_prompt = custom_prompt_arg
logging.debug(f"Anthropic: User Prompt is {anthropic_user_prompt}")
user_message = {
"role": "user",
"content": f"{input_data} \n\n\n\n{anthropic_user_prompt}"
}
data = {
"model": model,
"max_tokens": 4096, # max _possible_ tokens to return
"messages": [user_message],
"stop_sequences": ["\n\nHuman:"],
"temperature": 0.1,
"top_k": 0,
"top_p": 1.0,
"metadata": {
"user_id": "example_user_id",
},
"stream": False,
"system": f"{system_prompt}"
}
for attempt in range(max_retries):
try:
logging.debug("anthropic: Posting request to API")
response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data)
# Check if the status code indicates success
if response.status_code == 200:
logging.debug("anthropic: Post submittal successful")
response_data = response.json()
try:
chat_response = response_data['content'][0]['text'].strip()
logging.debug("anthropic: Chat request successful")
print("Chat request processed successfully.")
return chat_response
except (IndexError, KeyError) as e:
logging.debug("anthropic: Unexpected data in response")
print("Unexpected response format from Anthropic API:", response.text)
return None
elif response.status_code == 500: # Handle internal server error specifically
logging.debug("anthropic: Internal server error")
print("Internal server error from API. Retrying may be necessary.")
time.sleep(retry_delay)
else:
logging.debug(
f"anthropic: Failed to process chat request, status code {response.status_code}: {response.text}")
print(f"Failed to process chat request, status code {response.status_code}: {response.text}")
return None
except RequestException as e:
logging.error(f"anthropic: Network error during attempt {attempt + 1}/{max_retries}: {str(e)}")
if attempt < max_retries - 1:
time.sleep(retry_delay)
else:
return f"anthropic: Network error: {str(e)}"
except Exception as e:
logging.error(f"anthropic: Error in processing: {str(e)}")
return f"anthropic: Error occurred while processing summary with Anthropic: {str(e)}"
# Summarize with Cohere
def chat_with_cohere(api_key, input_data, model, custom_prompt_arg, system_prompt=None):
global cohere_api_key
loaded_config_data = load_and_log_configs()
try:
# API key validation
if api_key is None:
logging.info("cohere: API key not provided as parameter")
logging.info("cohere: Attempting to use API key from config file")
cohere_api_key = loaded_config_data['api_keys']['cohere']
if api_key is None or api_key.strip() == "":
logging.error("cohere: API key not found or is empty")
return "cohere: API Key Not Provided/Found in Config file or is empty"
logging.debug(f"cohere: Using API Key: {api_key[:5]}...{api_key[-5:]}")
logging.debug(f"Cohere: Loaded data: {input_data}")
logging.debug(f"Cohere: Type of data: {type(input_data)}")
cohere_model = loaded_config_data['models']['cohere']
headers = {
'accept': 'application/json',
'content-type': 'application/json',
'Authorization': f'Bearer {cohere_api_key}'
}
if system_prompt is not None:
logging.debug("Anthropic: Using provided system prompt")
pass
else:
system_prompt = "You are a helpful assistant"
cohere_prompt = f"{input_data} \n\n\n\n{custom_prompt_arg}"
logging.debug(f"cohere: User Prompt being sent is {cohere_prompt}")
logging.debug(f"cohere: System Prompt being sent is {system_prompt}")
data = {
"chat_history": [
{"role": "SYSTEM", "message": f"system_prompt"},
],
"message": f"{cohere_prompt}",
"model": model,
"connectors": [{"id": "web-search"}]
}
logging.debug("cohere: Submitting request to API endpoint")
print("cohere: Submitting request to API endpoint")
response = requests.post('https://api.cohere.ai/v1/chat', headers=headers, json=data)
response_data = response.json()
logging.debug("API Response Data: %s", response_data)
if response.status_code == 200:
if 'text' in response_data:
chat_response = response_data['text'].strip()
logging.debug("cohere: Chat request successful")
print("Chat request processed successfully.")
return chat_response
else:
logging.error("Expected data not found in API response.")
return "Expected data not found in API response."
else:
logging.error(f"cohere: API request failed with status code {response.status_code}: {response.text}")
print(f"Failed to process summary, status code {response.status_code}: {response.text}")
return f"cohere: API request failed: {response.text}"
except Exception as e:
logging.error("cohere: Error in processing: %s", str(e))
return f"cohere: Error occurred while processing summary with Cohere: {str(e)}"
# https://console.groq.com/docs/quickstart
def chat_with_groq(api_key, input_data, custom_prompt_arg, system_prompt=None):
loaded_config_data = load_and_log_configs()
try:
# API key validation
if api_key is None:
logging.info("groq: API key not provided as parameter")
logging.info("groq: Attempting to use API key from config file")
groq_api_key = loaded_config_data['api_keys']['groq']
if api_key is None or api_key.strip() == "":
logging.error("groq: API key not found or is empty")
return "groq: API Key Not Provided/Found in Config file or is empty"
logging.debug(f"groq: Using API Key: {api_key[:5]}...{api_key[-5:]}")
logging.debug(f"Groq: Loaded data: {input_data}")
logging.debug(f"Groq: Type of data: {type(input_data)}")
# Set the model to be used
groq_model = loaded_config_data['models']['groq']
headers = {
'Authorization': f'Bearer {api_key}',
'Content-Type': 'application/json'
}
if system_prompt is not None:
logging.debug("Groq: Using provided system prompt")
pass
else:
system_prompt = "You are a helpful assistant"
groq_prompt = f"{input_data} \n\n\n\n{custom_prompt_arg}"
logging.debug("groq: User Prompt being sent is {groq_prompt}")
logging.debug("groq: System Prompt being sent is {system_prompt}")
data = {
"messages": [
{
"role": "system",
"content": f"{system_prompt}"
},
{
"role": "user",
"content": groq_prompt
}
],
"model": groq_model
}
logging.debug("groq: Submitting request to API endpoint")
print("groq: Submitting request to API endpoint")
response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data)
response_data = response.json()
logging.debug("API Response Data: %s", response_data)
if response.status_code == 200:
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("groq: Summarization successful")
print("Summarization successful.")
return summary
else:
logging.error("Expected data not found in API response.")
return "Expected data not found in API response."
else:
logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}")
return f"groq: API request failed: {response.text}"
except Exception as e:
logging.error("groq: Error in processing: %s", str(e))
return f"groq: Error occurred while processing summary with groq: {str(e)}"
def chat_with_openrouter(api_key, input_data, custom_prompt_arg, system_prompt=None):
loaded_config_data = load_and_log_configs()
import requests
import json
global openrouter_model, openrouter_api_key
# API key validation
if api_key is None:
logging.info("openrouter: API key not provided as parameter")
logging.info("openrouter: Attempting to use API key from config file")
openrouter_api_key = loaded_config_data['api_keys']['openrouter']
if api_key is None or api_key.strip() == "":
logging.error("openrouter: API key not found or is empty")
return "openrouter: API Key Not Provided/Found in Config file or is empty"
logging.debug(f"openai: Using API Key: {api_key[:5]}...{api_key[-5:]}")
logging.debug(f"openrouter: Loaded data: {input_data}")
logging.debug(f"openrouter: Type of data: {type(input_data)}")
config = configparser.ConfigParser()
file_path = 'config.txt'
# Check if the file exists in the specified path
if os.path.exists(file_path):
config.read(file_path)
elif os.path.exists('config.txt'): # Check in the current directory
config.read('../config.txt')
else:
print("config.txt not found in the specified path or current directory.")
openrouter_model = loaded_config_data['models']['openrouter']
if system_prompt is not None:
logging.debug("OpenRouter: Using provided system prompt")
pass
else:
system_prompt = "You are a helpful assistant"
openrouter_prompt = f"{input_data} \n\n\n\n{custom_prompt_arg}"
logging.debug(f"openrouter: User Prompt being sent is {openrouter_prompt}")
logging.debug(f"openrouter: System Prompt being sent is {system_prompt}")
try:
logging.debug("openrouter: Submitting request to API endpoint")
print("openrouter: Submitting request to API endpoint")
response = requests.post(
url="https://openrouter.ai/api/v1/chat/completions",
headers={
"Authorization": f"Bearer {openrouter_api_key}",
},
data=json.dumps({
"model": f"{openrouter_model}",
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": openrouter_prompt}
]
})
)
response_data = response.json()
logging.debug("API Response Data: %s", response_data)
if response.status_code == 200:
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("openrouter: Chat request successful")
print("openrouter: Chat request successful.")
return summary
else:
logging.error("openrouter: Expected data not found in API response.")
return "openrouter: Expected data not found in API response."
else:
logging.error(f"openrouter: API request failed with status code {response.status_code}: {response.text}")
return f"openrouter: API request failed: {response.text}"
except Exception as e:
logging.error("openrouter: Error in processing: %s", str(e))
return f"openrouter: Error occurred while processing chat request with openrouter: {str(e)}"
# FIXME: This function is not yet implemented properly
def chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None):
loaded_config_data = load_and_log_configs()
global huggingface_api_key
logging.debug(f"huggingface: Summarization process starting...")
try:
# API key validation
if api_key is None:
logging.info("HuggingFace: API key not provided as parameter")
logging.info("HuggingFace: Attempting to use API key from config file")
huggingface_api_key = loaded_config_data['api_keys']['openai']
if api_key is None or api_key.strip() == "":
logging.error("HuggingFace: API key not found or is empty")
return "HuggingFace: API Key Not Provided/Found in Config file or is empty"
logging.debug(f"HuggingFace: Using API Key: {api_key[:5]}...{api_key[-5:]}")
headers = {
"Authorization": f"Bearer {api_key}"
}
# Setup model
huggingface_model = loaded_config_data['models']['huggingface']
API_URL = f"https://api-inference.huggingface.co/models/{huggingface_model}"
if system_prompt is not None:
logging.debug("HuggingFace: Using provided system prompt")
pass
else:
system_prompt = "You are a helpful assistant"
huggingface_prompt = f"{input_data}\n\n\n\n{custom_prompt_arg}"
logging.debug("huggingface: Prompt being sent is {huggingface_prompt}")
data = {
"inputs": f"{input_data}",
"parameters": {"max_length": 8192, "min_length": 100} # You can adjust max_length and min_length as needed
}
logging.debug("huggingface: Submitting request...")
response = requests.post(API_URL, headers=headers, json=data)
if response.status_code == 200:
summary = response.json()[0]['summary_text']
logging.debug("huggingface: Chat request successful")
print("Chat request successful.")
return summary
else:
logging.error(f"huggingface: Chat request failed with status code {response.status_code}: {response.text}")
return f"Failed to process chat request, status code {response.status_code}: {response.text}"
except Exception as e:
logging.error("huggingface: Error in processing: %s", str(e))
print(f"Error occurred while processing chat request with huggingface: {str(e)}")
return None
def chat_with_deepseek(api_key, input_data, custom_prompt_arg, system_prompt=None):
loaded_config_data = load_and_log_configs()
try:
# API key validation
if api_key is None or api_key.strip() == "":
logging.info("DeepSeek: API key not provided as parameter")
logging.info("DeepSeek: Attempting to use API key from config file")
api_key = loaded_config_data['api_keys']['deepseek']
if api_key is None or api_key.strip() == "":
logging.error("DeepSeek: API key not found or is empty")
return "DeepSeek: API Key Not Provided/Found in Config file or is empty"
logging.debug(f"DeepSeek: Using API Key: {api_key[:5]}...{api_key[-5:]}")
deepseek_model = loaded_config_data['models']['deepseek'] or "deepseek-chat"
headers = {
'Authorization': f'Bearer {api_key}',
'Content-Type': 'application/json'
}
if system_prompt is not None:
logging.debug(f"Deepseek: Using provided system prompt: {system_prompt}")
pass
else:
system_prompt = "You are a helpful assistant"
logging.debug(
f"Deepseek API Key: {api_key[:5]}...{api_key[-5:] if api_key else None}")
logging.debug("openai: Preparing data + prompt for submittal")
deepseek_prompt = f"{input_data} \n\n\n\n{custom_prompt_arg}"
data = {
"model": deepseek_model,
"messages": [
{"role": "system", "content": f"{system_prompt}"},
{"role": "user", "content": deepseek_prompt}
],
"stream": False,
"temperature": 0.8
}
logging.debug("DeepSeek: Posting request")
response = requests.post('https://api.deepseek.com/chat/completions', headers=headers, json=data)
if response.status_code == 200:
response_data = response.json()
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("DeepSeek: Chat request successful")
return summary
else:
logging.warning("DeepSeek: Chat response not found in the response data")
return "DeepSeek: Chat response not available"
else:
logging.error(f"DeepSeek: Chat request failed with status code {response.status_code}")
logging.error(f"DeepSeek: Error response: {response.text}")
return f"DeepSeek: Failed to chat request summary. Status code: {response.status_code}"
except Exception as e:
logging.error(f"DeepSeek: Error in processing: {str(e)}", exc_info=True)
return f"DeepSeek: Error occurred while processing chat request: {str(e)}"
# Stashed in here since OpenAI usage.... #FIXME
# FIXME - https://docs.vllm.ai/en/latest/getting_started/quickstart.html .... Great docs.
def chat_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions", system_prompt=None):
loaded_config_data = load_and_log_configs()
llm_model = loaded_config_data['models']['vllm']
# API key validation
if api_key is None:
logging.info("vLLM: API key not provided as parameter")
logging.info("vLLM: Attempting to use API key from config file")
api_key = loaded_config_data['api_keys']['llama']
if api_key is None or api_key.strip() == "":
logging.info("vLLM: API key not found or is empty")
vllm_client = OpenAI(
base_url=vllm_api_url,
api_key=custom_prompt_input
)
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("vLLM: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("vLLM: Using provided string data for summarization")
data = input_data
logging.debug(f"vLLM: Loaded data: {data}")
logging.debug(f"vLLM: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("vLLM: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Invalid input data format")
custom_prompt = custom_prompt_input
completion = client.chat.completions.create(
model=llm_model,
messages=[
{"role": "system", "content": f"{system_prompt}"},
{"role": "user", "content": f"{text} \n\n\n\n{custom_prompt}"}
]
)
vllm_summary = completion.choices[0].message.content
return vllm_summary
#
#
####################################################################################################################### |