File size: 17,052 Bytes
ed28876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
# Utils.py
#########################################
# General Utilities Library
# This library is used to hold random utilities used by various other libraries.
#
####
####################
# Function List
#
# 1. extract_text_from_segments(segments: List[Dict]) -> str
# 2. download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5)
# 3. verify_checksum(file_path, expected_checksum)
# 4. create_download_directory(title)
# 5. sanitize_filename(filename)
# 6. normalize_title(title)
# 7.
#
#
#
####################
# Import necessary libraries
import configparser
import hashlib
import json
import logging
from datetime import timedelta
from urllib.parse import urlparse, parse_qs, urlencode, urlunparse

import requests
import time
from tqdm import tqdm
import os
import re
import unicodedata

from App_Function_Libraries.Video_DL_Ingestion_Lib import get_youtube


#######################################################################################################################
# Function Definitions
#

def extract_text_from_segments(segments):
    logging.debug(f"Segments received: {segments}")
    logging.debug(f"Type of segments: {type(segments)}")

    def extract_text_recursive(data):
        if isinstance(data, dict):
            for key, value in data.items():
                if key == 'Text':
                    return value
                elif isinstance(value, (dict, list)):
                    result = extract_text_recursive(value)
                    if result:
                        return result
        elif isinstance(data, list):
            return ' '.join(filter(None, [extract_text_recursive(item) for item in data]))
        return None

    text = extract_text_recursive(segments)

    if text:
        return text.strip()
    else:
        logging.error(f"Unable to extract text from segments: {segments}")
        return "Error: Unable to extract transcription"


def download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5):
    temp_path = dest_path + '.tmp'

    for attempt in range(max_retries):
        try:
            # Check if a partial download exists and get its size
            resume_header = {}
            if os.path.exists(temp_path):
                resume_header = {'Range': f'bytes={os.path.getsize(temp_path)}-'}

            response = requests.get(url, stream=True, headers=resume_header)
            response.raise_for_status()

            # Get the total file size from headers
            total_size = int(response.headers.get('content-length', 0))
            initial_pos = os.path.getsize(temp_path) if os.path.exists(temp_path) else 0

            mode = 'ab' if 'Range' in response.headers else 'wb'
            with open(temp_path, mode) as temp_file, tqdm(
                total=total_size, unit='B', unit_scale=True, desc=dest_path, initial=initial_pos, ascii=True
            ) as pbar:
                for chunk in response.iter_content(chunk_size=8192):
                    if chunk:  # filter out keep-alive new chunks
                        temp_file.write(chunk)
                        pbar.update(len(chunk))

            # Verify the checksum if provided
            if expected_checksum:
                if not verify_checksum(temp_path, expected_checksum):
                    os.remove(temp_path)
                    raise ValueError("Downloaded file's checksum does not match the expected checksum")

            # Move the file to the final destination
            os.rename(temp_path, dest_path)
            print("Download complete and verified!")
            return dest_path

        except Exception as e:
            print(f"Attempt {attempt + 1} failed: {e}")
            if attempt < max_retries - 1:
                print(f"Retrying in {delay} seconds...")
                time.sleep(delay)
            else:
                print("Max retries reached. Download failed.")
                raise


def verify_checksum(file_path, expected_checksum):
    sha256_hash = hashlib.sha256()
    with open(file_path, 'rb') as f:
        for byte_block in iter(lambda: f.read(4096), b''):
            sha256_hash.update(byte_block)
    return sha256_hash.hexdigest() == expected_checksum


def create_download_directory(title):
    base_dir = "Results"
    # Remove characters that are illegal in Windows filenames and normalize
    safe_title = normalize_title(title)
    logging.debug(f"{title} successfully normalized")
    session_path = os.path.join(base_dir, safe_title)
    if not os.path.exists(session_path):
        os.makedirs(session_path, exist_ok=True)
        logging.debug(f"Created directory for downloaded video: {session_path}")
    else:
        logging.debug(f"Directory already exists for downloaded video: {session_path}")
    return session_path


def sanitize_filename(filename):
    # Remove invalid characters and replace spaces with underscores
    sanitized = re.sub(r'[<>:"/\\|?*]', '', filename)
    sanitized = re.sub(r'\s+', ' ', sanitized).strip()
    return sanitized


def normalize_title(title):
    # Normalize the string to 'NFKD' form and encode to 'ascii' ignoring non-ascii characters
    title = unicodedata.normalize('NFKD', title).encode('ascii', 'ignore').decode('ascii')
    title = title.replace('/', '_').replace('\\', '_').replace(':', '_').replace('"', '').replace('*', '').replace('?',
                                                                                                                   '').replace(
        '<', '').replace('>', '').replace('|', '')
    return title




def clean_youtube_url(url):
    parsed_url = urlparse(url)
    query_params = parse_qs(parsed_url.query)
    if 'list' in query_params:
        query_params.pop('list')
    cleaned_query = urlencode(query_params, doseq=True)
    cleaned_url = urlunparse(parsed_url._replace(query=cleaned_query))
    return cleaned_url


def extract_video_info(url):
    info_dict = get_youtube(url)
    title = info_dict.get('title', 'Untitled')
    return info_dict, title


def clean_youtube_url(url):
    parsed_url = urlparse(url)
    query_params = parse_qs(parsed_url.query)
    if 'list' in query_params:
        query_params.pop('list')
    cleaned_query = urlencode(query_params, doseq=True)
    cleaned_url = urlunparse(parsed_url._replace(query=cleaned_query))
    return cleaned_url

def extract_video_info(url):
    info_dict = get_youtube(url)
    title = info_dict.get('title', 'Untitled')
    return info_dict, title

def import_data(file):
    # Implement this function to import data from a file
    pass




#######################
# Config loading
#

def load_comprehensive_config():
    # Get the directory of the current script
    current_dir = os.path.dirname(os.path.abspath(__file__))
    # Go up one level to the project root directory
    project_root = os.path.dirname(current_dir)
    # Construct the path to the config file in the project root directory
    config_path = os.path.join(project_root, 'config.txt')
    # Create a ConfigParser object
    config = configparser.ConfigParser()
    # Read the configuration file
    files_read = config.read(config_path)
    if not files_read:
        raise FileNotFoundError(f"Config file not found at {config_path}")
    return config


def load_and_log_configs():
    try:
        config = load_comprehensive_config()
        if config is None:
            logging.error("Config is None, cannot proceed")
            return None
        # API Keys
        anthropic_api_key = config.get('API', 'anthropic_api_key', fallback=None)
        logging.debug(
            f"Loaded Anthropic API Key: {anthropic_api_key[:5]}...{anthropic_api_key[-5:] if anthropic_api_key else None}")

        cohere_api_key = config.get('API', 'cohere_api_key', fallback=None)
        logging.debug(
            f"Loaded Cohere API Key: {cohere_api_key[:5]}...{cohere_api_key[-5:] if cohere_api_key else None}")

        groq_api_key = config.get('API', 'groq_api_key', fallback=None)
        logging.debug(f"Loaded Groq API Key: {groq_api_key[:5]}...{groq_api_key[-5:] if groq_api_key else None}")

        openai_api_key = config.get('API', 'openai_api_key', fallback=None)
        logging.debug(
            f"Loaded OpenAI API Key: {openai_api_key[:5]}...{openai_api_key[-5:] if openai_api_key else None}")

        huggingface_api_key = config.get('API', 'huggingface_api_key', fallback=None)
        logging.debug(
            f"Loaded HuggingFace API Key: {huggingface_api_key[:5]}...{huggingface_api_key[-5:] if huggingface_api_key else None}")

        openrouter_api_key = config.get('API', 'openrouter_api_key', fallback=None)
        logging.debug(
            f"Loaded OpenRouter API Key: {openrouter_api_key[:5]}...{openrouter_api_key[-5:] if openrouter_api_key else None}")

        deepseek_api_key = config.get('API', 'deepseek_api_key', fallback=None)
        logging.debug(
            f"Loaded DeepSeek API Key: {deepseek_api_key[:5]}...{deepseek_api_key[-5:] if deepseek_api_key else None}")

        # Models
        anthropic_model = config.get('API', 'anthropic_model', fallback='claude-3-sonnet-20240229')
        cohere_model = config.get('API', 'cohere_model', fallback='command-r-plus')
        groq_model = config.get('API', 'groq_model', fallback='llama3-70b-8192')
        openai_model = config.get('API', 'openai_model', fallback='gpt-4-turbo')
        huggingface_model = config.get('API', 'huggingface_model', fallback='CohereForAI/c4ai-command-r-plus')
        openrouter_model = config.get('API', 'openrouter_model', fallback='microsoft/wizardlm-2-8x22b')
        deepseek_model = config.get('API', 'deepseek_model', fallback='deepseek-chat')

        logging.debug(f"Loaded Anthropic Model: {anthropic_model}")
        logging.debug(f"Loaded Cohere Model: {cohere_model}")
        logging.debug(f"Loaded Groq Model: {groq_model}")
        logging.debug(f"Loaded OpenAI Model: {openai_model}")
        logging.debug(f"Loaded HuggingFace Model: {huggingface_model}")
        logging.debug(f"Loaded OpenRouter Model: {openrouter_model}")

        # Local-Models
        kobold_api_IP = config.get('Local-API', 'kobold_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate')
        kobold_api_key = config.get('Local-API', 'kobold_api_key', fallback='')

        llama_api_IP = config.get('Local-API', 'llama_api_IP', fallback='http://127.0.0.1:8080/v1/chat/completions')
        llama_api_key = config.get('Local-API', 'llama_api_key', fallback='')

        ooba_api_IP = config.get('Local-API', 'ooba_api_IP', fallback='http://127.0.0.1:5000/v1/chat/completions')
        ooba_api_key = config.get('Local-API', 'ooba_api_key', fallback='')

        tabby_api_IP = config.get('Local-API', 'tabby_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate')
        tabby_api_key = config.get('Local-API', 'tabby_api_key', fallback=None)

        vllm_api_url = config.get('Local-API', 'vllm_api_IP', fallback='http://127.0.0.1:500/api/v1/chat/completions')
        vllm_api_key = config.get('Local-API', 'vllm_api_key', fallback=None)

        logging.debug(f"Loaded Kobold API IP: {kobold_api_IP}")
        logging.debug(f"Loaded Llama API IP: {llama_api_IP}")
        logging.debug(f"Loaded Ooba API IP: {ooba_api_IP}")
        logging.debug(f"Loaded Tabby API IP: {tabby_api_IP}")
        logging.debug(f"Loaded VLLM API URL: {vllm_api_url}")

        # Retrieve output paths from the configuration file
        output_path = config.get('Paths', 'output_path', fallback='results')
        logging.debug(f"Output path set to: {output_path}")

        # Retrieve processing choice from the configuration file
        processing_choice = config.get('Processing', 'processing_choice', fallback='cpu')
        logging.debug(f"Processing choice set to: {processing_choice}")

        # Prompts - FIXME
        prompt_path = config.get('Prompts', 'prompt_path', fallback='prompts.db')

        return {
            'api_keys': {
                'anthropic': anthropic_api_key,
                'cohere': cohere_api_key,
                'groq': groq_api_key,
                'openai': openai_api_key,
                'huggingface': huggingface_api_key,
                'openrouter': openrouter_api_key,
                'deepseek': deepseek_api_key
            },
            'models': {
                'anthropic': anthropic_model,
                'cohere': cohere_model,
                'groq': groq_model,
                'openai': openai_model,
                'huggingface': huggingface_model,
                'openrouter': openrouter_model,
                'deepseek': deepseek_model
            },
            'local_apis': {
                'kobold': {'ip': kobold_api_IP, 'key': kobold_api_key},
                'llama': {'ip': llama_api_IP, 'key': llama_api_key},
                'ooba': {'ip': ooba_api_IP, 'key': ooba_api_key},
                'tabby': {'ip': tabby_api_IP, 'key': tabby_api_key},
                'vllm': {'ip': vllm_api_url, 'key': vllm_api_key}
            },
            'output_path': output_path,
            'processing_choice': processing_choice
        }

    except Exception as e:
        logging.error(f"Error loading config: {str(e)}")
        return None



# Log file
# logging.basicConfig(filename='debug-runtime.log', encoding='utf-8', level=logging.DEBUG)







def format_metadata_as_text(metadata):
    if not metadata:
        return "No metadata available"

    formatted_text = "Video Metadata:\n"
    for key, value in metadata.items():
        if value is not None:
            if isinstance(value, list):
                # Join list items with commas
                formatted_value = ", ".join(str(item) for item in value)
            elif key == 'upload_date' and len(str(value)) == 8:
                # Format date as YYYY-MM-DD
                formatted_value = f"{value[:4]}-{value[4:6]}-{value[6:]}"
            elif key in ['view_count', 'like_count']:
                # Format large numbers with commas
                formatted_value = f"{value:,}"
            elif key == 'duration':
                # Convert seconds to HH:MM:SS format
                hours, remainder = divmod(value, 3600)
                minutes, seconds = divmod(remainder, 60)
                formatted_value = f"{hours:02d}:{minutes:02d}:{seconds:02d}"
            else:
                formatted_value = str(value)

            formatted_text += f"{key.capitalize()}: {formatted_value}\n"
    return formatted_text.strip()

# # Example usage:
# example_metadata = {
#     'title': 'Sample Video Title',
#     'uploader': 'Channel Name',
#     'upload_date': '20230615',
#     'view_count': 1000000,
#     'like_count': 50000,
#     'duration': 3725,  # 1 hour, 2 minutes, 5 seconds
#     'tags': ['tag1', 'tag2', 'tag3'],
#     'description': 'This is a sample video description.'
# }
#
# print(format_metadata_as_text(example_metadata))



def convert_to_seconds(time_str):
    if not time_str:
        return 0

    # If it's already a number, assume it's in seconds
    if time_str.isdigit():
        return int(time_str)

    # Parse time string in format HH:MM:SS, MM:SS, or SS
    time_parts = time_str.split(':')
    if len(time_parts) == 3:
        return int(timedelta(hours=int(time_parts[0]),
                             minutes=int(time_parts[1]),
                             seconds=int(time_parts[2])).total_seconds())
    elif len(time_parts) == 2:
        return int(timedelta(minutes=int(time_parts[0]),
                             seconds=int(time_parts[1])).total_seconds())
    elif len(time_parts) == 1:
        return int(time_parts[0])
    else:
        raise ValueError(f"Invalid time format: {time_str}")


def save_to_file(video_urls, filename):
    with open(filename, 'w') as file:
        file.write('\n'.join(video_urls))
    print(f"Video URLs saved to {filename}")


def save_segments_to_json(segments, file_name="transcription_segments.json"):
    """

    Save transcription segments to a JSON file.



    Parameters:

    segments (list): List of transcription segments

    file_name (str): Name of the JSON file to save (default: "transcription_segments.json")



    Returns:

    str: Path to the saved JSON file

    """
    # Ensure the Results directory exists
    os.makedirs("Results", exist_ok=True)

    # Full path for the JSON file
    json_file_path = os.path.join("Results", file_name)

    # Save segments to JSON file
    with open(json_file_path, 'w', encoding='utf-8') as json_file:
        json.dump(segments, json_file, ensure_ascii=False, indent=4)

    return json_file_path