|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json
|
|
import logging
|
|
import os
|
|
import requests
|
|
|
|
from openai import OpenAI
|
|
|
|
from App_Function_Libraries.Utils import load_and_log_configs
|
|
from App_Function_Libraries.Utils import extract_text_from_segments
|
|
|
|
|
|
|
|
|
|
|
|
logger = logging.getLogger()
|
|
|
|
|
|
openai_api_key = "Fake_key"
|
|
client = OpenAI(api_key=openai_api_key)
|
|
|
|
def summarize_with_local_llm(input_data, custom_prompt_arg):
|
|
try:
|
|
if isinstance(input_data, str) and os.path.isfile(input_data):
|
|
logging.debug("Local LLM: Loading json data for summarization")
|
|
with open(input_data, 'r') as file:
|
|
data = json.load(file)
|
|
else:
|
|
logging.debug("openai: Using provided string data for summarization")
|
|
data = input_data
|
|
|
|
logging.debug(f"Local LLM: Loaded data: {data}")
|
|
logging.debug(f"Local LLM: Type of data: {type(data)}")
|
|
|
|
if isinstance(data, dict) and 'summary' in data:
|
|
|
|
logging.debug("Local LLM: Summary already exists in the loaded data")
|
|
return data['summary']
|
|
|
|
|
|
if isinstance(data, list):
|
|
segments = data
|
|
text = extract_text_from_segments(segments)
|
|
elif isinstance(data, str):
|
|
text = data
|
|
else:
|
|
raise ValueError("Invalid input data format")
|
|
|
|
headers = {
|
|
'Content-Type': 'application/json'
|
|
}
|
|
|
|
logging.debug("Local LLM: Preparing data + prompt for submittal")
|
|
local_llm_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
|
|
data = {
|
|
"messages": [
|
|
{
|
|
"role": "system",
|
|
"content": "You are a professional summarizer."
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": local_llm_prompt
|
|
}
|
|
],
|
|
"max_tokens": 28000,
|
|
}
|
|
logging.debug("Local LLM: Posting request")
|
|
response = requests.post('http://127.0.0.1:8080/v1/chat/completions', headers=headers, json=data)
|
|
|
|
if response.status_code == 200:
|
|
response_data = response.json()
|
|
if 'choices' in response_data and len(response_data['choices']) > 0:
|
|
summary = response_data['choices'][0]['message']['content'].strip()
|
|
logging.debug("Local LLM: Summarization successful")
|
|
print("Local LLM: Summarization successful.")
|
|
return summary
|
|
else:
|
|
logging.warning("Local LLM: Summary not found in the response data")
|
|
return "Local LLM: Summary not available"
|
|
else:
|
|
logging.debug("Local LLM: Summarization failed")
|
|
print("Local LLM: Failed to process summary:", response.text)
|
|
return "Local LLM: Failed to process summary"
|
|
except Exception as e:
|
|
logging.debug("Local LLM: Error in processing: %s", str(e))
|
|
print("Error occurred while processing summary with Local LLM:", str(e))
|
|
return "Local LLM: Error occurred while processing summary"
|
|
|
|
def summarize_with_llama(input_data, custom_prompt, api_url="http://127.0.0.1:8080/completion", api_key=None):
|
|
loaded_config_data = load_and_log_configs()
|
|
try:
|
|
|
|
if api_key is None:
|
|
logging.info("llama.cpp: API key not provided as parameter")
|
|
logging.info("llama.cpp: Attempting to use API key from config file")
|
|
api_key = loaded_config_data['api_keys']['llama']
|
|
|
|
if api_key is None or api_key.strip() == "":
|
|
logging.info("llama.cpp: API key not found or is empty")
|
|
|
|
logging.debug(f"llama.cpp: Using API Key: {api_key[:5]}...{api_key[-5:]}")
|
|
|
|
|
|
logging.debug("llama.cpp: Loading JSON data")
|
|
if isinstance(input_data, str) and os.path.isfile(input_data):
|
|
logging.debug("Llama.cpp: Loading json data for summarization")
|
|
with open(input_data, 'r') as file:
|
|
data = json.load(file)
|
|
else:
|
|
logging.debug("Llama.cpp: Using provided string data for summarization")
|
|
data = input_data
|
|
|
|
logging.debug(f"Llama.cpp: Loaded data: {data}")
|
|
logging.debug(f"Llama.cpp: Type of data: {type(data)}")
|
|
|
|
if isinstance(data, dict) and 'summary' in data:
|
|
|
|
logging.debug("Llama.cpp: Summary already exists in the loaded data")
|
|
return data['summary']
|
|
|
|
|
|
if isinstance(data, list):
|
|
segments = data
|
|
text = extract_text_from_segments(segments)
|
|
elif isinstance(data, str):
|
|
text = data
|
|
else:
|
|
raise ValueError("Llama.cpp: Invalid input data format")
|
|
|
|
headers = {
|
|
'accept': 'application/json',
|
|
'content-type': 'application/json',
|
|
}
|
|
if len(api_key) > 5:
|
|
headers['Authorization'] = f'Bearer {api_key}'
|
|
|
|
llama_prompt = f"{text} \n\n\n\n{custom_prompt}"
|
|
logging.debug("llama: Prompt being sent is {llama_prompt}")
|
|
|
|
data = {
|
|
"prompt": llama_prompt
|
|
}
|
|
|
|
logging.debug("llama: Submitting request to API endpoint")
|
|
print("llama: Submitting request to API endpoint")
|
|
response = requests.post(api_url, headers=headers, json=data)
|
|
response_data = response.json()
|
|
logging.debug("API Response Data: %s", response_data)
|
|
|
|
if response.status_code == 200:
|
|
|
|
logging.debug(response_data)
|
|
summary = response_data['content'].strip()
|
|
logging.debug("llama: Summarization successful")
|
|
print("Summarization successful.")
|
|
return summary
|
|
else:
|
|
logging.error(f"Llama: API request failed with status code {response.status_code}: {response.text}")
|
|
return f"Llama: API request failed: {response.text}"
|
|
|
|
except Exception as e:
|
|
logging.error("Llama: Error in processing: %s", str(e))
|
|
return f"Llama: Error occurred while processing summary with llama: {str(e)}"
|
|
|
|
|
|
|
|
def summarize_with_kobold(input_data, api_key, custom_prompt_input, kobold_api_IP="http://127.0.0.1:5001/api/v1/generate"):
|
|
loaded_config_data = load_and_log_configs()
|
|
try:
|
|
|
|
if api_key is None:
|
|
logging.info("Kobold.cpp: API key not provided as parameter")
|
|
logging.info("Kobold.cpp: Attempting to use API key from config file")
|
|
api_key = loaded_config_data['api_keys']['kobold']
|
|
|
|
if api_key is None or api_key.strip() == "":
|
|
logging.info("Kobold.cpp: API key not found or is empty")
|
|
|
|
if isinstance(input_data, str) and os.path.isfile(input_data):
|
|
logging.debug("Kobold.cpp: Loading json data for summarization")
|
|
with open(input_data, 'r') as file:
|
|
data = json.load(file)
|
|
else:
|
|
logging.debug("Kobold.cpp: Using provided string data for summarization")
|
|
data = input_data
|
|
|
|
logging.debug(f"Kobold.cpp: Loaded data: {data}")
|
|
logging.debug(f"Kobold.cpp: Type of data: {type(data)}")
|
|
|
|
if isinstance(data, dict) and 'summary' in data:
|
|
|
|
logging.debug("Kobold.cpp: Summary already exists in the loaded data")
|
|
return data['summary']
|
|
|
|
|
|
if isinstance(data, list):
|
|
segments = data
|
|
text = extract_text_from_segments(segments)
|
|
elif isinstance(data, str):
|
|
text = data
|
|
else:
|
|
raise ValueError("Kobold.cpp: Invalid input data format")
|
|
|
|
headers = {
|
|
'accept': 'application/json',
|
|
'content-type': 'application/json',
|
|
}
|
|
|
|
kobold_prompt = f"{text} \n\n\n\n{custom_prompt_input}"
|
|
logging.debug("kobold: Prompt being sent is {kobold_prompt}")
|
|
|
|
|
|
|
|
data = {
|
|
"max_context_length": 8096,
|
|
"max_length": 4096,
|
|
"prompt": f"{text}\n\n\n\n{custom_prompt_input}"
|
|
}
|
|
|
|
logging.debug("kobold: Submitting request to API endpoint")
|
|
print("kobold: Submitting request to API endpoint")
|
|
response = requests.post(kobold_api_IP, headers=headers, json=data)
|
|
response_data = response.json()
|
|
logging.debug("kobold: API Response Data: %s", response_data)
|
|
|
|
if response.status_code == 200:
|
|
if 'results' in response_data and len(response_data['results']) > 0:
|
|
summary = response_data['results'][0]['text'].strip()
|
|
logging.debug("kobold: Summarization successful")
|
|
print("Summarization successful.")
|
|
return summary
|
|
else:
|
|
logging.error("Expected data not found in API response.")
|
|
return "Expected data not found in API response."
|
|
else:
|
|
logging.error(f"kobold: API request failed with status code {response.status_code}: {response.text}")
|
|
return f"kobold: API request failed: {response.text}"
|
|
|
|
except Exception as e:
|
|
logging.error("kobold: Error in processing: %s", str(e))
|
|
return f"kobold: Error occurred while processing summary with kobold: {str(e)}"
|
|
|
|
|
|
|
|
def summarize_with_oobabooga(input_data, api_key, custom_prompt, api_url="http://127.0.0.1:5000/v1/chat/completions"):
|
|
loaded_config_data = load_and_log_configs()
|
|
try:
|
|
|
|
if api_key is None:
|
|
logging.info("ooba: API key not provided as parameter")
|
|
logging.info("ooba: Attempting to use API key from config file")
|
|
api_key = loaded_config_data['api_keys']['ooba']
|
|
|
|
if api_key is None or api_key.strip() == "":
|
|
logging.info("ooba: API key not found or is empty")
|
|
|
|
if isinstance(input_data, str) and os.path.isfile(input_data):
|
|
logging.debug("Oobabooga: Loading json data for summarization")
|
|
with open(input_data, 'r') as file:
|
|
data = json.load(file)
|
|
else:
|
|
logging.debug("Oobabooga: Using provided string data for summarization")
|
|
data = input_data
|
|
|
|
logging.debug(f"Oobabooga: Loaded data: {data}")
|
|
logging.debug(f"Oobabooga: Type of data: {type(data)}")
|
|
|
|
if isinstance(data, dict) and 'summary' in data:
|
|
|
|
logging.debug("Oobabooga: Summary already exists in the loaded data")
|
|
return data['summary']
|
|
|
|
|
|
if isinstance(data, list):
|
|
segments = data
|
|
text = extract_text_from_segments(segments)
|
|
elif isinstance(data, str):
|
|
text = data
|
|
else:
|
|
raise ValueError("Invalid input data format")
|
|
|
|
headers = {
|
|
'accept': 'application/json',
|
|
'content-type': 'application/json',
|
|
}
|
|
|
|
|
|
|
|
|
|
ooba_prompt = f"{text}" + f"\n\n\n\n{custom_prompt}"
|
|
logging.debug("ooba: Prompt being sent is {ooba_prompt}")
|
|
|
|
data = {
|
|
"mode": "chat",
|
|
"character": "Example",
|
|
"messages": [{"role": "user", "content": ooba_prompt}]
|
|
}
|
|
|
|
logging.debug("ooba: Submitting request to API endpoint")
|
|
print("ooba: Submitting request to API endpoint")
|
|
response = requests.post(api_url, headers=headers, json=data, verify=False)
|
|
logging.debug("ooba: API Response Data: %s", response)
|
|
|
|
if response.status_code == 200:
|
|
response_data = response.json()
|
|
summary = response.json()['choices'][0]['message']['content']
|
|
logging.debug("ooba: Summarization successful")
|
|
print("Summarization successful.")
|
|
return summary
|
|
else:
|
|
logging.error(f"oobabooga: API request failed with status code {response.status_code}: {response.text}")
|
|
return f"ooba: API request failed with status code {response.status_code}: {response.text}"
|
|
|
|
except Exception as e:
|
|
logging.error("ooba: Error in processing: %s", str(e))
|
|
return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}"
|
|
|
|
|
|
|
|
def summarize_with_tabbyapi(input_data, custom_prompt_input, api_key=None, api_IP="http://127.0.0.1:5000/v1/chat/completions"):
|
|
loaded_config_data = load_and_log_configs()
|
|
model = loaded_config_data['models']['tabby']
|
|
|
|
if api_key is None:
|
|
logging.info("tabby: API key not provided as parameter")
|
|
logging.info("tabby: Attempting to use API key from config file")
|
|
api_key = loaded_config_data['api_keys']['tabby']
|
|
|
|
if api_key is None or api_key.strip() == "":
|
|
logging.info("tabby: API key not found or is empty")
|
|
|
|
if isinstance(input_data, str) and os.path.isfile(input_data):
|
|
logging.debug("tabby: Loading json data for summarization")
|
|
with open(input_data, 'r') as file:
|
|
data = json.load(file)
|
|
else:
|
|
logging.debug("tabby: Using provided string data for summarization")
|
|
data = input_data
|
|
|
|
logging.debug(f"tabby: Loaded data: {data}")
|
|
logging.debug(f"tabby: Type of data: {type(data)}")
|
|
|
|
if isinstance(data, dict) and 'summary' in data:
|
|
|
|
logging.debug("tabby: Summary already exists in the loaded data")
|
|
return data['summary']
|
|
|
|
|
|
if isinstance(data, list):
|
|
segments = data
|
|
text = extract_text_from_segments(segments)
|
|
elif isinstance(data, str):
|
|
text = data
|
|
else:
|
|
raise ValueError("Invalid input data format")
|
|
|
|
headers = {
|
|
'Authorization': f'Bearer {api_key}',
|
|
'Content-Type': 'application/json'
|
|
}
|
|
data2 = {
|
|
'text': text,
|
|
'model': 'tabby'
|
|
}
|
|
tabby_api_ip = loaded_config_data['local_apis']['tabby']['ip']
|
|
try:
|
|
response = requests.post(tabby_api_ip, headers=headers, json=data2)
|
|
response.raise_for_status()
|
|
summary = response.json().get('summary', '')
|
|
return summary
|
|
except requests.exceptions.RequestException as e:
|
|
logger.error(f"Error summarizing with TabbyAPI: {e}")
|
|
return "Error summarizing with TabbyAPI."
|
|
|
|
|
|
|
|
def summarize_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions"):
|
|
loaded_config_data = load_and_log_configs()
|
|
llm_model = loaded_config_data['models']['vllm']
|
|
|
|
if api_key is None:
|
|
logging.info("vLLM: API key not provided as parameter")
|
|
logging.info("vLLM: Attempting to use API key from config file")
|
|
api_key = loaded_config_data['api_keys']['llama']
|
|
|
|
if api_key is None or api_key.strip() == "":
|
|
logging.info("vLLM: API key not found or is empty")
|
|
vllm_client = OpenAI(
|
|
base_url=vllm_api_url,
|
|
api_key=custom_prompt_input
|
|
)
|
|
|
|
if isinstance(input_data, str) and os.path.isfile(input_data):
|
|
logging.debug("vLLM: Loading json data for summarization")
|
|
with open(input_data, 'r') as file:
|
|
data = json.load(file)
|
|
else:
|
|
logging.debug("vLLM: Using provided string data for summarization")
|
|
data = input_data
|
|
|
|
logging.debug(f"vLLM: Loaded data: {data}")
|
|
logging.debug(f"vLLM: Type of data: {type(data)}")
|
|
|
|
if isinstance(data, dict) and 'summary' in data:
|
|
|
|
logging.debug("vLLM: Summary already exists in the loaded data")
|
|
return data['summary']
|
|
|
|
|
|
if isinstance(data, list):
|
|
segments = data
|
|
text = extract_text_from_segments(segments)
|
|
elif isinstance(data, str):
|
|
text = data
|
|
else:
|
|
raise ValueError("Invalid input data format")
|
|
|
|
|
|
custom_prompt = custom_prompt_input
|
|
|
|
completion = client.chat.completions.create(
|
|
model=llm_model,
|
|
messages=[
|
|
{"role": "system", "content": "You are a professional summarizer."},
|
|
{"role": "user", "content": f"{text} \n\n\n\n{custom_prompt}"}
|
|
]
|
|
)
|
|
vllm_summary = completion.choices[0].message.content
|
|
return vllm_summary
|
|
|
|
|
|
def save_summary_to_file(summary, file_path):
|
|
logging.debug("Now saving summary to file...")
|
|
base_name = os.path.splitext(os.path.basename(file_path))[0]
|
|
summary_file_path = os.path.join(os.path.dirname(file_path), base_name + '_summary.txt')
|
|
os.makedirs(os.path.dirname(summary_file_path), exist_ok=True)
|
|
logging.debug("Opening summary file for writing, *segments.json with *_summary.txt")
|
|
with open(summary_file_path, 'w') as file:
|
|
file.write(summary)
|
|
logging.info(f"Summary saved to file: {summary_file_path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|