Open_NotebookLM_TLDW / App_Function_Libraries /Local_Summarization_Lib.py
oceansweep's picture
?
ed28876
raw
history blame
20.1 kB
# Local_Summarization_Lib.py
#########################################
# Local Summarization Library
# This library is used to perform summarization with a 'local' inference engine.
#
####
#
####################
# Function List
# FIXME - UPDATE Function Arguments
# 1. summarize_with_local_llm(text, custom_prompt_arg)
# 2. summarize_with_llama(api_url, text, token, custom_prompt)
# 3. summarize_with_kobold(api_url, text, kobold_api_token, custom_prompt)
# 4. summarize_with_oobabooga(api_url, text, ooba_api_token, custom_prompt)
# 5. summarize_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg)
# 6. summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt)
# 7. save_summary_to_file(summary, file_path)
#
###############################
# Import necessary libraries
import json
import logging
import os
import requests
# Import 3rd-party Libraries
from openai import OpenAI
# Import Local
from App_Function_Libraries.Utils import load_and_log_configs
from App_Function_Libraries.Utils import extract_text_from_segments
#
#######################################################################################################################
# Function Definitions
#
logger = logging.getLogger()
# Dirty hack for vLLM
openai_api_key = "Fake_key"
client = OpenAI(api_key=openai_api_key)
def summarize_with_local_llm(input_data, custom_prompt_arg):
try:
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("Local LLM: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("openai: Using provided string data for summarization")
data = input_data
logging.debug(f"Local LLM: Loaded data: {data}")
logging.debug(f"Local LLM: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("Local LLM: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Invalid input data format")
headers = {
'Content-Type': 'application/json'
}
logging.debug("Local LLM: Preparing data + prompt for submittal")
local_llm_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
data = {
"messages": [
{
"role": "system",
"content": "You are a professional summarizer."
},
{
"role": "user",
"content": local_llm_prompt
}
],
"max_tokens": 28000, # Adjust tokens as needed
}
logging.debug("Local LLM: Posting request")
response = requests.post('http://127.0.0.1:8080/v1/chat/completions', headers=headers, json=data)
if response.status_code == 200:
response_data = response.json()
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("Local LLM: Summarization successful")
print("Local LLM: Summarization successful.")
return summary
else:
logging.warning("Local LLM: Summary not found in the response data")
return "Local LLM: Summary not available"
else:
logging.debug("Local LLM: Summarization failed")
print("Local LLM: Failed to process summary:", response.text)
return "Local LLM: Failed to process summary"
except Exception as e:
logging.debug("Local LLM: Error in processing: %s", str(e))
print("Error occurred while processing summary with Local LLM:", str(e))
return "Local LLM: Error occurred while processing summary"
def summarize_with_llama(input_data, custom_prompt, api_url="http://127.0.0.1:8080/completion", api_key=None):
loaded_config_data = load_and_log_configs()
try:
# API key validation
if api_key is None:
logging.info("llama.cpp: API key not provided as parameter")
logging.info("llama.cpp: Attempting to use API key from config file")
api_key = loaded_config_data['api_keys']['llama']
if api_key is None or api_key.strip() == "":
logging.info("llama.cpp: API key not found or is empty")
logging.debug(f"llama.cpp: Using API Key: {api_key[:5]}...{api_key[-5:]}")
# Load transcript
logging.debug("llama.cpp: Loading JSON data")
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("Llama.cpp: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("Llama.cpp: Using provided string data for summarization")
data = input_data
logging.debug(f"Llama.cpp: Loaded data: {data}")
logging.debug(f"Llama.cpp: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("Llama.cpp: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Llama.cpp: Invalid input data format")
headers = {
'accept': 'application/json',
'content-type': 'application/json',
}
if len(api_key) > 5:
headers['Authorization'] = f'Bearer {api_key}'
llama_prompt = f"{text} \n\n\n\n{custom_prompt}"
logging.debug("llama: Prompt being sent is {llama_prompt}")
data = {
"prompt": llama_prompt
}
logging.debug("llama: Submitting request to API endpoint")
print("llama: Submitting request to API endpoint")
response = requests.post(api_url, headers=headers, json=data)
response_data = response.json()
logging.debug("API Response Data: %s", response_data)
if response.status_code == 200:
# if 'X' in response_data:
logging.debug(response_data)
summary = response_data['content'].strip()
logging.debug("llama: Summarization successful")
print("Summarization successful.")
return summary
else:
logging.error(f"Llama: API request failed with status code {response.status_code}: {response.text}")
return f"Llama: API request failed: {response.text}"
except Exception as e:
logging.error("Llama: Error in processing: %s", str(e))
return f"Llama: Error occurred while processing summary with llama: {str(e)}"
# https://lite.koboldai.net/koboldcpp_api#/api%2Fv1/post_api_v1_generate
def summarize_with_kobold(input_data, api_key, custom_prompt_input, kobold_api_IP="http://127.0.0.1:5001/api/v1/generate"):
loaded_config_data = load_and_log_configs()
try:
# API key validation
if api_key is None:
logging.info("Kobold.cpp: API key not provided as parameter")
logging.info("Kobold.cpp: Attempting to use API key from config file")
api_key = loaded_config_data['api_keys']['kobold']
if api_key is None or api_key.strip() == "":
logging.info("Kobold.cpp: API key not found or is empty")
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("Kobold.cpp: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("Kobold.cpp: Using provided string data for summarization")
data = input_data
logging.debug(f"Kobold.cpp: Loaded data: {data}")
logging.debug(f"Kobold.cpp: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("Kobold.cpp: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Kobold.cpp: Invalid input data format")
headers = {
'accept': 'application/json',
'content-type': 'application/json',
}
kobold_prompt = f"{text} \n\n\n\n{custom_prompt_input}"
logging.debug("kobold: Prompt being sent is {kobold_prompt}")
# FIXME
# Values literally c/p from the api docs....
data = {
"max_context_length": 8096,
"max_length": 4096,
"prompt": f"{text}\n\n\n\n{custom_prompt_input}"
}
logging.debug("kobold: Submitting request to API endpoint")
print("kobold: Submitting request to API endpoint")
response = requests.post(kobold_api_IP, headers=headers, json=data)
response_data = response.json()
logging.debug("kobold: API Response Data: %s", response_data)
if response.status_code == 200:
if 'results' in response_data and len(response_data['results']) > 0:
summary = response_data['results'][0]['text'].strip()
logging.debug("kobold: Summarization successful")
print("Summarization successful.")
return summary
else:
logging.error("Expected data not found in API response.")
return "Expected data not found in API response."
else:
logging.error(f"kobold: API request failed with status code {response.status_code}: {response.text}")
return f"kobold: API request failed: {response.text}"
except Exception as e:
logging.error("kobold: Error in processing: %s", str(e))
return f"kobold: Error occurred while processing summary with kobold: {str(e)}"
# https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API
def summarize_with_oobabooga(input_data, api_key, custom_prompt, api_url="http://127.0.0.1:5000/v1/chat/completions"):
loaded_config_data = load_and_log_configs()
try:
# API key validation
if api_key is None:
logging.info("ooba: API key not provided as parameter")
logging.info("ooba: Attempting to use API key from config file")
api_key = loaded_config_data['api_keys']['ooba']
if api_key is None or api_key.strip() == "":
logging.info("ooba: API key not found or is empty")
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("Oobabooga: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("Oobabooga: Using provided string data for summarization")
data = input_data
logging.debug(f"Oobabooga: Loaded data: {data}")
logging.debug(f"Oobabooga: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("Oobabooga: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Invalid input data format")
headers = {
'accept': 'application/json',
'content-type': 'application/json',
}
# prompt_text = "I like to eat cake and bake cakes. I am a baker. I work in a French bakery baking cakes. It
# is a fun job. I have been baking cakes for ten years. I also bake lots of other baked goods, but cakes are
# my favorite." prompt_text += f"\n\n{text}" # Uncomment this line if you want to include the text variable
ooba_prompt = f"{text}" + f"\n\n\n\n{custom_prompt}"
logging.debug("ooba: Prompt being sent is {ooba_prompt}")
data = {
"mode": "chat",
"character": "Example",
"messages": [{"role": "user", "content": ooba_prompt}]
}
logging.debug("ooba: Submitting request to API endpoint")
print("ooba: Submitting request to API endpoint")
response = requests.post(api_url, headers=headers, json=data, verify=False)
logging.debug("ooba: API Response Data: %s", response)
if response.status_code == 200:
response_data = response.json()
summary = response.json()['choices'][0]['message']['content']
logging.debug("ooba: Summarization successful")
print("Summarization successful.")
return summary
else:
logging.error(f"oobabooga: API request failed with status code {response.status_code}: {response.text}")
return f"ooba: API request failed with status code {response.status_code}: {response.text}"
except Exception as e:
logging.error("ooba: Error in processing: %s", str(e))
return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}"
# FIXME - Install is more trouble than care to deal with right now.
def summarize_with_tabbyapi(input_data, custom_prompt_input, api_key=None, api_IP="http://127.0.0.1:5000/v1/chat/completions"):
loaded_config_data = load_and_log_configs()
model = loaded_config_data['models']['tabby']
# API key validation
if api_key is None:
logging.info("tabby: API key not provided as parameter")
logging.info("tabby: Attempting to use API key from config file")
api_key = loaded_config_data['api_keys']['tabby']
if api_key is None or api_key.strip() == "":
logging.info("tabby: API key not found or is empty")
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("tabby: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("tabby: Using provided string data for summarization")
data = input_data
logging.debug(f"tabby: Loaded data: {data}")
logging.debug(f"tabby: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("tabby: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Invalid input data format")
headers = {
'Authorization': f'Bearer {api_key}',
'Content-Type': 'application/json'
}
data2 = {
'text': text,
'model': 'tabby' # Specify the model if needed
}
tabby_api_ip = loaded_config_data['local_apis']['tabby']['ip']
try:
response = requests.post(tabby_api_ip, headers=headers, json=data2)
response.raise_for_status()
summary = response.json().get('summary', '')
return summary
except requests.exceptions.RequestException as e:
logger.error(f"Error summarizing with TabbyAPI: {e}")
return "Error summarizing with TabbyAPI."
# FIXME - https://docs.vllm.ai/en/latest/getting_started/quickstart.html .... Great docs.
def summarize_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions"):
loaded_config_data = load_and_log_configs()
llm_model = loaded_config_data['models']['vllm']
# API key validation
if api_key is None:
logging.info("vLLM: API key not provided as parameter")
logging.info("vLLM: Attempting to use API key from config file")
api_key = loaded_config_data['api_keys']['llama']
if api_key is None or api_key.strip() == "":
logging.info("vLLM: API key not found or is empty")
vllm_client = OpenAI(
base_url=vllm_api_url,
api_key=custom_prompt_input
)
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("vLLM: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("vLLM: Using provided string data for summarization")
data = input_data
logging.debug(f"vLLM: Loaded data: {data}")
logging.debug(f"vLLM: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("vLLM: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Invalid input data format")
custom_prompt = custom_prompt_input
completion = client.chat.completions.create(
model=llm_model,
messages=[
{"role": "system", "content": "You are a professional summarizer."},
{"role": "user", "content": f"{text} \n\n\n\n{custom_prompt}"}
]
)
vllm_summary = completion.choices[0].message.content
return vllm_summary
def save_summary_to_file(summary, file_path):
logging.debug("Now saving summary to file...")
base_name = os.path.splitext(os.path.basename(file_path))[0]
summary_file_path = os.path.join(os.path.dirname(file_path), base_name + '_summary.txt')
os.makedirs(os.path.dirname(summary_file_path), exist_ok=True)
logging.debug("Opening summary file for writing, *segments.json with *_summary.txt")
with open(summary_file_path, 'w') as file:
file.write(summary)
logging.info(f"Summary saved to file: {summary_file_path}")
#
#
#######################################################################################################################