|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import configparser
|
|
import json
|
|
import logging
|
|
import os
|
|
from pathlib import Path
|
|
import time
|
|
|
|
from App_Function_Libraries.Audio_Transcription_Lib import speech_to_text
|
|
|
|
|
|
from pyannote.audio import Model
|
|
from pyannote.audio.pipelines.speaker_diarization import SpeakerDiarization
|
|
import torch
|
|
import yaml
|
|
|
|
|
|
|
|
|
|
|
|
def load_pipeline_from_pretrained(path_to_config: str | Path) -> SpeakerDiarization:
|
|
path_to_config = Path(path_to_config).resolve()
|
|
print(f"Loading pyannote pipeline from {path_to_config}...")
|
|
|
|
if not path_to_config.exists():
|
|
raise FileNotFoundError(f"Config file not found: {path_to_config}")
|
|
|
|
|
|
with open(path_to_config, 'r') as config_file:
|
|
config = yaml.safe_load(config_file)
|
|
|
|
|
|
cwd = Path.cwd().resolve()
|
|
|
|
|
|
cd_to = path_to_config.parent.resolve()
|
|
print(f"Changing working directory to {cd_to}")
|
|
os.chdir(cd_to)
|
|
|
|
try:
|
|
|
|
pipeline = SpeakerDiarization()
|
|
|
|
|
|
embedding_path = Path(config['pipeline']['params']['embedding']).resolve()
|
|
segmentation_path = Path(config['pipeline']['params']['segmentation']).resolve()
|
|
|
|
if not embedding_path.exists():
|
|
raise FileNotFoundError(f"Embedding model file not found: {embedding_path}")
|
|
if not segmentation_path.exists():
|
|
raise FileNotFoundError(f"Segmentation model file not found: {segmentation_path}")
|
|
|
|
|
|
pipeline.embedding = Model.from_pretrained(str(embedding_path), map_location=torch.device('cpu'))
|
|
pipeline.segmentation = Model.from_pretrained(str(segmentation_path), map_location=torch.device('cpu'))
|
|
|
|
|
|
pipeline.clustering = config['pipeline']['params']['clustering']
|
|
pipeline.embedding_batch_size = config['pipeline']['params']['embedding_batch_size']
|
|
pipeline.embedding_exclude_overlap = config['pipeline']['params']['embedding_exclude_overlap']
|
|
pipeline.segmentation_batch_size = config['pipeline']['params']['segmentation_batch_size']
|
|
|
|
|
|
pipeline.instantiate(config['params'])
|
|
|
|
finally:
|
|
|
|
print(f"Changing working directory back to {cwd}")
|
|
os.chdir(cwd)
|
|
|
|
return pipeline
|
|
|
|
def audio_diarization(audio_file_path):
|
|
logging.info('audio-diarization: Loading pyannote pipeline')
|
|
config = configparser.ConfigParser()
|
|
config.read('config.txt')
|
|
processing_choice = config.get('Processing', 'processing_choice', fallback='cpu')
|
|
|
|
base_dir = Path(__file__).parent.resolve()
|
|
config_path = base_dir / 'models' / 'config.yaml'
|
|
pipeline = load_pipeline_from_pretrained(config_path)
|
|
|
|
time_start = time.time()
|
|
if audio_file_path is None:
|
|
raise ValueError("audio-diarization: No audio file provided")
|
|
logging.info("audio-diarization: Audio file path: %s", audio_file_path)
|
|
|
|
try:
|
|
_, file_ending = os.path.splitext(audio_file_path)
|
|
out_file = audio_file_path.replace(file_ending, ".diarization.json")
|
|
prettified_out_file = audio_file_path.replace(file_ending, ".diarization_pretty.json")
|
|
if os.path.exists(out_file):
|
|
logging.info("audio-diarization: Diarization file already exists: %s", out_file)
|
|
with open(out_file) as f:
|
|
global diarization_result
|
|
diarization_result = json.load(f)
|
|
return diarization_result
|
|
|
|
logging.info('audio-diarization: Starting diarization...')
|
|
diarization_result = pipeline(audio_file_path)
|
|
|
|
segments = []
|
|
for turn, _, speaker in diarization_result.itertracks(yield_label=True):
|
|
chunk = {
|
|
"Time_Start": turn.start,
|
|
"Time_End": turn.end,
|
|
"Speaker": speaker
|
|
}
|
|
logging.debug("Segment: %s", chunk)
|
|
segments.append(chunk)
|
|
logging.info("audio-diarization: Diarization completed with pyannote")
|
|
|
|
output_data = {'segments': segments}
|
|
|
|
logging.info("audio-diarization: Saving prettified JSON to %s", prettified_out_file)
|
|
with open(prettified_out_file, 'w') as f:
|
|
json.dump(output_data, f, indent=2)
|
|
|
|
logging.info("audio-diarization: Saving JSON to %s", out_file)
|
|
with open(out_file, 'w') as f:
|
|
json.dump(output_data, f)
|
|
|
|
except Exception as e:
|
|
logging.error("audio-diarization: Error performing diarization: %s", str(e))
|
|
raise RuntimeError("audio-diarization: Error performing diarization")
|
|
return segments
|
|
|
|
def combine_transcription_and_diarization(audio_file_path):
|
|
logging.info('combine-transcription-and-diarization: Starting transcription and diarization...')
|
|
|
|
transcription_result = speech_to_text(audio_file_path)
|
|
|
|
diarization_result = audio_diarization(audio_file_path)
|
|
|
|
combined_result = []
|
|
for transcription_segment in transcription_result:
|
|
for diarization_segment in diarization_result:
|
|
if transcription_segment['Time_Start'] >= diarization_segment['Time_Start'] and transcription_segment[
|
|
'Time_End'] <= diarization_segment['Time_End']:
|
|
combined_segment = {
|
|
"Time_Start": transcription_segment['Time_Start'],
|
|
"Time_End": transcription_segment['Time_End'],
|
|
"Speaker": diarization_segment['Speaker'],
|
|
"Text": transcription_segment['Text']
|
|
}
|
|
combined_result.append(combined_segment)
|
|
break
|
|
|
|
_, file_ending = os.path.splitext(audio_file_path)
|
|
out_file = audio_file_path.replace(file_ending, ".combined.json")
|
|
prettified_out_file = audio_file_path.replace(file_ending, ".combined_pretty.json")
|
|
|
|
logging.info("combine-transcription-and-diarization: Saving prettified JSON to %s", prettified_out_file)
|
|
with open(prettified_out_file, 'w') as f:
|
|
json.dump(combined_result, f, indent=2)
|
|
|
|
logging.info("combine-transcription-and-diarization: Saving JSON to %s", out_file)
|
|
with open(out_file, 'w') as f:
|
|
json.dump(combined_result, f)
|
|
|
|
return combined_result
|
|
|
|
|
|
|