oceansweep's picture
?
ed28876
raw
history blame
1.44 kB
import gradio as gr
import json
from transformers import pipeline
# Initialize the text generation pipeline
generator = pipeline('text-generation', model='gpt2')
def adjust_tone(text, concise, casual):
tones = [
{"tone": "concise", "weight": concise},
{"tone": "casual", "weight": casual},
{"tone": "professional", "weight": 1 - casual},
{"tone": "expanded", "weight": 1 - concise}
]
tones = sorted(tones, key=lambda x: x['weight'], reverse=True)[:2]
tone_prompt = " and ".join([f"{t['tone']} (weight: {t['weight']:.2f})" for t in tones])
prompt = f"Rewrite the following text to match these tones: {tone_prompt}. Text: {text}"
result = generator(prompt, max_length=100, num_return_sequences=1)
return result[0]['generated_text']
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# Tone Adjuster")
input_text = gr.Textbox(label="Input Text")
with gr.Row():
concise_slider = gr.Slider(minimum=0, maximum=1, value=0.5, label="Concise vs Expanded")
casual_slider = gr.Slider(minimum=0, maximum=1, value=0.5, label="Casual vs Professional")
output_text = gr.Textbox(label="Adjusted Text")
adjust_btn = gr.Button("Adjust Tone")
adjust_btn.click(
adjust_tone,
inputs=[input_text, concise_slider, casual_slider],
outputs=output_text
)
demo.launch()