|
|
|
|
|
import argparse
|
|
import atexit
|
|
import json
|
|
import logging
|
|
import os
|
|
import signal
|
|
import sys
|
|
import time
|
|
import webbrowser
|
|
|
|
|
|
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 'App_Function_Libraries')))
|
|
from App_Function_Libraries.Book_Ingestion_Lib import ingest_folder, ingest_text_file
|
|
from App_Function_Libraries.Chunk_Lib import semantic_chunk_long_file
|
|
from App_Function_Libraries.Gradio_Related import launch_ui
|
|
from App_Function_Libraries.Local_LLM_Inference_Engine_Lib import cleanup_process, local_llm_function
|
|
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_llama, summarize_with_kobold, \
|
|
summarize_with_oobabooga, summarize_with_tabbyapi, summarize_with_vllm, summarize_with_local_llm
|
|
from App_Function_Libraries.Summarization_General_Lib import summarize_with_openai, summarize_with_anthropic, \
|
|
summarize_with_cohere, summarize_with_groq, summarize_with_openrouter, summarize_with_deepseek, \
|
|
summarize_with_huggingface, perform_transcription, perform_summarization
|
|
from App_Function_Libraries.Audio_Transcription_Lib import convert_to_wav, speech_to_text
|
|
from App_Function_Libraries.Local_File_Processing_Lib import read_paths_from_file, process_local_file
|
|
from App_Function_Libraries.SQLite_DB import add_media_to_database, is_valid_url
|
|
from App_Function_Libraries.System_Checks_Lib import cuda_check, platform_check, check_ffmpeg
|
|
from App_Function_Libraries.Utils import load_and_log_configs, sanitize_filename, create_download_directory, extract_text_from_segments
|
|
from App_Function_Libraries.Video_DL_Ingestion_Lib import download_video, extract_video_info
|
|
|
|
|
|
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
log_level = "DEBUG"
|
|
logging.basicConfig(level=getattr(logging, log_level), format='%(asctime)s - %(levelname)s - %(message)s')
|
|
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
|
|
|
|
|
|
|
custom_prompt_input = ("Above is the transcript of a video. Please read through the transcript carefully. Identify the "
|
|
"main topics that are discussed over the course of the transcript. Then, summarize the key points about each main "
|
|
"topic in bullet points. The bullet points should cover the key information conveyed about each topic in the video, "
|
|
"but should be much shorter than the full transcript. Please output your bullet point summary inside <bulletpoints> "
|
|
"tags.")
|
|
|
|
|
|
whisper_models = ["small", "medium", "small.en", "medium.en", "medium", "large", "large-v1", "large-v2", "large-v3",
|
|
"distil-large-v2", "distil-medium.en", "distil-small.en"]
|
|
server_mode = False
|
|
share_public = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
abc_xyz = """
|
|
Database Setup
|
|
Config Loading
|
|
System Checks
|
|
DataBase Functions
|
|
Processing Paths and local file handling
|
|
Video Download/Handling
|
|
Audio Transcription
|
|
Diarization
|
|
Chunking-related Techniques & Functions
|
|
Tokenization-related Techniques & Functions
|
|
Summarizers
|
|
Gradio UI
|
|
Main
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
|
|
|
whisper_models = ["small", "medium", "small.en", "medium.en", "medium", "large", "large-v1", "large-v2", "large-v3",
|
|
"distil-large-v2", "distil-medium.en", "distil-small.en"]
|
|
source_languages = {
|
|
"en": "English",
|
|
"zh": "Chinese",
|
|
"de": "German",
|
|
"es": "Spanish",
|
|
"ru": "Russian",
|
|
"ko": "Korean",
|
|
"fr": "French"
|
|
}
|
|
source_language_list = [key[0] for key in source_languages.items()]
|
|
|
|
|
|
def print_hello():
|
|
print(r"""_____ _ ________ _ _
|
|
|_ _|| | / /| _ \| | | | _
|
|
| | | | / / | | | || | | |(_)
|
|
| | | | / / | | | || |/\| |
|
|
| | | |____ / / | |/ / \ /\ / _
|
|
\_/ \_____//_/ |___/ \/ \/ (_)
|
|
|
|
|
|
_ _
|
|
| | | |
|
|
| |_ ___ ___ | | ___ _ __ __ _
|
|
| __| / _ \ / _ \ | | / _ \ | '_ \ / _` |
|
|
| |_ | (_) || (_) | | || (_) || | | || (_| | _
|
|
\__| \___/ \___/ |_| \___/ |_| |_| \__, |( )
|
|
__/ ||/
|
|
|___/
|
|
_ _ _ _ _ _ _
|
|
| |(_) | | ( )| | | | | |
|
|
__| | _ __| | _ __ |/ | |_ __ __ __ _ | |_ ___ | |__
|
|
/ _` || | / _` || '_ \ | __| \ \ /\ / / / _` || __| / __|| '_ \
|
|
| (_| || || (_| || | | | | |_ \ V V / | (_| || |_ | (__ | | | |
|
|
\__,_||_| \__,_||_| |_| \__| \_/\_/ \__,_| \__| \___||_| |_|
|
|
""")
|
|
time.sleep(1)
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main(input_path, api_name=None, api_key=None,
|
|
num_speakers=2,
|
|
whisper_model="small.en",
|
|
offset=0,
|
|
vad_filter=False,
|
|
download_video_flag=False,
|
|
custom_prompt=None,
|
|
overwrite=False,
|
|
rolling_summarization=False,
|
|
detail=0.01,
|
|
keywords=None,
|
|
llm_model=None,
|
|
time_based=False,
|
|
set_chunk_txt_by_words=False,
|
|
set_max_txt_chunk_words=0,
|
|
set_chunk_txt_by_sentences=False,
|
|
set_max_txt_chunk_sentences=0,
|
|
set_chunk_txt_by_paragraphs=False,
|
|
set_max_txt_chunk_paragraphs=0,
|
|
set_chunk_txt_by_tokens=False,
|
|
set_max_txt_chunk_tokens=0,
|
|
ingest_text_file=False,
|
|
chunk=False,
|
|
max_chunk_size=2000,
|
|
chunk_overlap=100,
|
|
chunk_unit='tokens',
|
|
summarize_chunks=None,
|
|
diarize=False
|
|
):
|
|
global detail_level_number, summary, audio_file, transcription_text, info_dict
|
|
|
|
detail_level = detail
|
|
|
|
print(f"Keywords: {keywords}")
|
|
|
|
if not input_path:
|
|
return []
|
|
|
|
start_time = time.monotonic()
|
|
paths = [input_path] if not os.path.isfile(input_path) else read_paths_from_file(input_path)
|
|
results = []
|
|
|
|
for path in paths:
|
|
try:
|
|
if path.startswith('http'):
|
|
info_dict, title = extract_video_info(path)
|
|
download_path = create_download_directory(title)
|
|
video_path = download_video(path, download_path, info_dict, download_video_flag)
|
|
|
|
if video_path:
|
|
if diarize:
|
|
audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter, diarize=True)
|
|
transcription_text = {'audio_file': audio_file, 'transcription': segments}
|
|
else:
|
|
audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter)
|
|
transcription_text = {'audio_file': audio_file, 'transcription': segments}
|
|
|
|
|
|
if rolling_summarization == True:
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif api_name:
|
|
summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key)
|
|
else:
|
|
summary = None
|
|
|
|
if summary:
|
|
|
|
summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt")
|
|
with open(summary_file_path, 'w') as file:
|
|
file.write(summary)
|
|
|
|
add_media_to_database(path, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model)
|
|
else:
|
|
logging.error(f"Failed to download video: {path}")
|
|
|
|
|
|
|
|
elif chunk and path.lower().endswith('.txt'):
|
|
chunks = semantic_chunk_long_file(path, max_chunk_size, chunk_overlap)
|
|
if chunks:
|
|
chunks_data = {
|
|
"file_path": path,
|
|
"chunk_unit": chunk_unit,
|
|
"max_chunk_size": max_chunk_size,
|
|
"chunk_overlap": chunk_overlap,
|
|
"chunks": []
|
|
}
|
|
summaries_data = {
|
|
"file_path": path,
|
|
"summarization_method": summarize_chunks,
|
|
"summaries": []
|
|
}
|
|
|
|
for i, chunk_text in enumerate(chunks):
|
|
chunk_info = {
|
|
"chunk_id": i + 1,
|
|
"text": chunk_text
|
|
}
|
|
chunks_data["chunks"].append(chunk_info)
|
|
|
|
if summarize_chunks:
|
|
summary = None
|
|
if summarize_chunks == 'openai':
|
|
summary = summarize_with_openai(api_key, chunk_text, custom_prompt)
|
|
elif summarize_chunks == 'anthropic':
|
|
summary = summarize_with_anthropic(api_key, chunk_text, custom_prompt)
|
|
elif summarize_chunks == 'cohere':
|
|
summary = summarize_with_cohere(api_key, chunk_text, custom_prompt)
|
|
elif summarize_chunks == 'groq':
|
|
summary = summarize_with_groq(api_key, chunk_text, custom_prompt)
|
|
elif summarize_chunks == 'local-llm':
|
|
summary = summarize_with_local_llm(chunk_text, custom_prompt)
|
|
|
|
|
|
if summary:
|
|
summary_info = {
|
|
"chunk_id": i + 1,
|
|
"summary": summary
|
|
}
|
|
summaries_data["summaries"].append(summary_info)
|
|
else:
|
|
logging.warning(f"Failed to generate summary for chunk {i + 1}")
|
|
|
|
|
|
chunks_file_path = f"{path}_chunks.json"
|
|
with open(chunks_file_path, 'w', encoding='utf-8') as f:
|
|
json.dump(chunks_data, f, ensure_ascii=False, indent=2)
|
|
logging.info(f"All chunks saved to {chunks_file_path}")
|
|
|
|
|
|
if summarize_chunks:
|
|
summaries_file_path = f"{path}_summaries.json"
|
|
with open(summaries_file_path, 'w', encoding='utf-8') as f:
|
|
json.dump(summaries_data, f, ensure_ascii=False, indent=2)
|
|
logging.info(f"All summaries saved to {summaries_file_path}")
|
|
|
|
logging.info(f"File {path} chunked into {len(chunks)} parts using {chunk_unit} as the unit.")
|
|
else:
|
|
logging.error(f"Failed to chunk file {path}")
|
|
|
|
|
|
else:
|
|
download_path, info_dict, urls_or_media_file = process_local_file(path)
|
|
if isinstance(urls_or_media_file, list):
|
|
|
|
for url in urls_or_media_file:
|
|
for item in urls_or_media_file:
|
|
if item.startswith(('http://', 'https://')):
|
|
info_dict, title = extract_video_info(url)
|
|
download_path = create_download_directory(title)
|
|
video_path = download_video(url, download_path, info_dict, download_video_flag)
|
|
|
|
if video_path:
|
|
if diarize:
|
|
audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter, diarize=True)
|
|
else:
|
|
audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter)
|
|
|
|
transcription_text = {'audio_file': audio_file, 'transcription': segments}
|
|
if rolling_summarization:
|
|
text = extract_text_from_segments(segments)
|
|
|
|
|
|
elif api_name:
|
|
summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key)
|
|
else:
|
|
summary = None
|
|
|
|
if summary:
|
|
|
|
summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt")
|
|
with open(summary_file_path, 'w') as file:
|
|
file.write(summary)
|
|
|
|
add_media_to_database(url, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model)
|
|
else:
|
|
logging.error(f"Failed to download video: {url}")
|
|
|
|
else:
|
|
|
|
media_path = urls_or_media_file
|
|
|
|
if media_path.lower().endswith(('.txt', '.md')):
|
|
if media_path.lower().endswith('.txt'):
|
|
|
|
result = ingest_text_file(media_path)
|
|
logging.info(result)
|
|
elif media_path.lower().endswith(('.mp4', '.avi', '.mov')):
|
|
if diarize:
|
|
audio_file, segments = perform_transcription(media_path, offset, whisper_model, vad_filter, diarize=True)
|
|
else:
|
|
audio_file, segments = perform_transcription(media_path, offset, whisper_model, vad_filter)
|
|
elif media_path.lower().endswith(('.wav', '.mp3', '.m4a')):
|
|
if diarize:
|
|
segments = speech_to_text(media_path, whisper_model=whisper_model, vad_filter=vad_filter, diarize=True)
|
|
else:
|
|
segments = speech_to_text(media_path, whisper_model=whisper_model, vad_filter=vad_filter)
|
|
else:
|
|
logging.error(f"Unsupported media file format: {media_path}")
|
|
continue
|
|
|
|
transcription_text = {'media_path': path, 'audio_file': media_path, 'transcription': segments}
|
|
|
|
|
|
if rolling_summarization:
|
|
|
|
|
|
pass
|
|
elif api_name:
|
|
summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key)
|
|
else:
|
|
summary = None
|
|
|
|
if summary:
|
|
|
|
summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt")
|
|
with open(summary_file_path, 'w') as file:
|
|
file.write(summary)
|
|
|
|
add_media_to_database(path, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model)
|
|
|
|
except Exception as e:
|
|
logging.error(f"Error processing {path}: {str(e)}")
|
|
continue
|
|
|
|
return transcription_text
|
|
|
|
|
|
def signal_handler(sig, frame):
|
|
logging.info('Signal handler called with signal: %s', sig)
|
|
cleanup_process()
|
|
sys.exit(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
signal.signal(signal.SIGINT, signal_handler)
|
|
signal.signal(signal.SIGTERM, signal_handler)
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
|
|
|
loaded_config_data = load_and_log_configs()
|
|
|
|
if loaded_config_data:
|
|
logging.info("Main: Configuration loaded successfully")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
print("Failed to load configuration")
|
|
|
|
|
|
print_hello()
|
|
|
|
transcription_text = None
|
|
|
|
parser = argparse.ArgumentParser(
|
|
description='Transcribe and summarize videos.',
|
|
epilog='''
|
|
Sample commands:
|
|
1. Simple Sample command structure:
|
|
summarize.py <path_to_video> -api openai -k tag_one tag_two tag_three
|
|
|
|
2. Rolling Summary Sample command structure:
|
|
summarize.py <path_to_video> -api openai -prompt "custom_prompt_goes_here-is-appended-after-transcription" -roll -detail 0.01 -k tag_one tag_two tag_three
|
|
|
|
3. FULL Sample command structure:
|
|
summarize.py <path_to_video> -api openai -ns 2 -wm small.en -off 0 -vad -log INFO -prompt "custom_prompt" -overwrite -roll -detail 0.01 -k tag_one tag_two tag_three
|
|
|
|
4. Sample command structure for UI:
|
|
summarize.py -gui -log DEBUG
|
|
''',
|
|
formatter_class=argparse.RawTextHelpFormatter
|
|
)
|
|
parser.add_argument('input_path', type=str, help='Path or URL of the video', nargs='?')
|
|
parser.add_argument('-v', '--video', action='store_true', help='Download the video instead of just the audio')
|
|
parser.add_argument('-api', '--api_name', type=str, help='API name for summarization (optional)')
|
|
parser.add_argument('-key', '--api_key', type=str, help='API key for summarization (optional)')
|
|
parser.add_argument('-ns', '--num_speakers', type=int, default=2, help='Number of speakers (default: 2)')
|
|
parser.add_argument('-wm', '--whisper_model', type=str, default='small',
|
|
help='Whisper model (default: small)| Options: tiny.en, tiny, base.en, base, small.en, small, medium.en, '
|
|
'medium, large-v1, large-v2, large-v3, large, distil-large-v2, distil-medium.en, '
|
|
'distil-small.en')
|
|
parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)')
|
|
parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter')
|
|
parser.add_argument('-log', '--log_level', type=str, default='INFO',
|
|
choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: INFO)')
|
|
parser.add_argument('-gui', '--user_interface', action='store_true', default=True, help="Launch the Gradio user interface")
|
|
parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode')
|
|
parser.add_argument('-prompt', '--custom_prompt', type=str,
|
|
help='Pass in a custom prompt to be used in place of the existing one.\n (Probably should just '
|
|
'modify the script itself...)')
|
|
parser.add_argument('-overwrite', '--overwrite', action='store_true', help='Overwrite existing files')
|
|
parser.add_argument('-roll', '--rolling_summarization', action='store_true', help='Enable rolling summarization')
|
|
parser.add_argument('-detail', '--detail_level', type=float, help='Mandatory if rolling summarization is enabled, '
|
|
'defines the chunk size.\n Default is 0.01(lots '
|
|
'of chunks) -> 1.00 (few chunks)\n Currently '
|
|
'only OpenAI works. ',
|
|
default=0.01, )
|
|
parser.add_argument('-model', '--llm_model', type=str, default='',
|
|
help='Model to use for LLM summarization (only used for vLLM/TabbyAPI)')
|
|
parser.add_argument('-k', '--keywords', nargs='+', default=['cli_ingest_no_tag'],
|
|
help='Keywords for tagging the media, can use multiple separated by spaces (default: cli_ingest_no_tag)')
|
|
parser.add_argument('--log_file', type=str, help='Where to save logfile (non-default)')
|
|
parser.add_argument('--local_llm', action='store_true',
|
|
help="Use a local LLM from the script(Downloads llamafile from github and 'mistral-7b-instruct-v0.2.Q8' - 8GB model from Huggingface)")
|
|
parser.add_argument('--server_mode', action='store_true',
|
|
help='Run in server mode (This exposes the GUI/Server to the network)')
|
|
parser.add_argument('--share_public', type=int, default=7860,
|
|
help="This will use Gradio's built-in ngrok tunneling to share the server publicly on the internet. Specify the port to use (default: 7860)")
|
|
parser.add_argument('--port', type=int, default=7860, help='Port to run the server on')
|
|
parser.add_argument('--ingest_text_file', action='store_true',
|
|
help='Ingest .txt files as content instead of treating them as URL lists')
|
|
parser.add_argument('--text_title', type=str, help='Title for the text file being ingested')
|
|
parser.add_argument('--text_author', type=str, help='Author of the text file being ingested')
|
|
parser.add_argument('--diarize', action='store_true', help='Enable speaker diarization')
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
set_chunk_txt_by_words = False
|
|
set_max_txt_chunk_words = 0
|
|
set_chunk_txt_by_sentences = False
|
|
set_max_txt_chunk_sentences = 0
|
|
set_chunk_txt_by_paragraphs = False
|
|
set_max_txt_chunk_paragraphs = 0
|
|
set_chunk_txt_by_tokens = False
|
|
set_max_txt_chunk_tokens = 0
|
|
|
|
if args.share_public:
|
|
share_public = args.share_public
|
|
else:
|
|
share_public = None
|
|
if args.server_mode:
|
|
|
|
server_mode = args.server_mode
|
|
else:
|
|
server_mode = None
|
|
if args.server_mode is True:
|
|
server_mode = True
|
|
if args.port:
|
|
server_port = args.port
|
|
else:
|
|
server_port = None
|
|
|
|
|
|
logger = logging.getLogger()
|
|
logger.setLevel(getattr(logging, args.log_level))
|
|
|
|
|
|
console_handler = logging.StreamHandler()
|
|
console_handler.setLevel(getattr(logging, args.log_level))
|
|
console_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
|
console_handler.setFormatter(console_formatter)
|
|
|
|
if args.log_file:
|
|
|
|
file_handler = logging.FileHandler(args.log_file)
|
|
file_handler.setLevel(getattr(logging, args.log_level))
|
|
file_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
|
file_handler.setFormatter(file_formatter)
|
|
logger.addHandler(file_handler)
|
|
logger.info(f"Log file created at: {args.log_file}")
|
|
|
|
|
|
custom_prompt_input = args.custom_prompt
|
|
|
|
if not args.custom_prompt:
|
|
logging.debug("No custom prompt defined, will use default")
|
|
args.custom_prompt_input = (
|
|
"\n\nabove is the transcript of a video. "
|
|
"Please read through the transcript carefully. Identify the main topics that are "
|
|
"discussed over the course of the transcript. Then, summarize the key points about each "
|
|
"main topic in a concise bullet point. The bullet points should cover the key "
|
|
"information conveyed about each topic in the video, but should be much shorter than "
|
|
"the full transcript. Please output your bullet point summary inside <bulletpoints> "
|
|
"tags."
|
|
)
|
|
print("No custom prompt defined, will use default")
|
|
|
|
custom_prompt_input = args.custom_prompt
|
|
else:
|
|
logging.debug(f"Custom prompt defined, will use \n\nf{custom_prompt_input} \n\nas the prompt")
|
|
print(f"Custom Prompt has been defined. Custom prompt: \n\n {args.custom_prompt}")
|
|
|
|
|
|
local_llm = args.local_llm
|
|
logging.info(f'Local LLM flag: {local_llm}')
|
|
|
|
|
|
if args.input_path is not None:
|
|
if os.path.isdir(args.input_path) and args.ingest_text_file:
|
|
results = ingest_folder(args.input_path, keywords=args.keywords)
|
|
for result in results:
|
|
print(result)
|
|
elif args.input_path.lower().endswith('.txt') and args.ingest_text_file:
|
|
result = ingest_text_file(args.input_path, title=args.text_title, author=args.text_author,
|
|
keywords=args.keywords)
|
|
print(result)
|
|
sys.exit(0)
|
|
|
|
|
|
|
|
if args.user_interface:
|
|
if local_llm:
|
|
local_llm_function()
|
|
time.sleep(2)
|
|
webbrowser.open_new_tab('http://127.0.0.1:7860')
|
|
launch_ui()
|
|
elif not args.input_path:
|
|
parser.print_help()
|
|
sys.exit(1)
|
|
|
|
else:
|
|
logging.info('Starting the transcription and summarization process.')
|
|
logging.info(f'Input path: {args.input_path}')
|
|
logging.info(f'API Name: {args.api_name}')
|
|
logging.info(f'Number of speakers: {args.num_speakers}')
|
|
logging.info(f'Whisper model: {args.whisper_model}')
|
|
logging.info(f'Offset: {args.offset}')
|
|
logging.info(f'VAD filter: {args.vad_filter}')
|
|
logging.info(f'Log Level: {args.log_level}')
|
|
logging.info(f'Demo Mode: {args.demo_mode}')
|
|
logging.info(f'Custom Prompt: {args.custom_prompt}')
|
|
logging.info(f'Overwrite: {args.overwrite}')
|
|
logging.info(f'Rolling Summarization: {args.rolling_summarization}')
|
|
logging.info(f'User Interface: {args.user_interface}')
|
|
logging.info(f'Video Download: {args.video}')
|
|
|
|
|
|
|
|
global api_name
|
|
api_name = args.api_name
|
|
|
|
summary = None
|
|
if args.detail_level == None:
|
|
args.detail_level = 0.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif args.api_name:
|
|
logging.info(f'MAIN: API used: {args.api_name}')
|
|
logging.info('MAIN: Summarization (not rolling) will be performed.')
|
|
|
|
else:
|
|
logging.info('No API specified. Summarization will not be performed.')
|
|
|
|
logging.debug("Platform check being performed...")
|
|
platform_check()
|
|
logging.debug("CUDA check being performed...")
|
|
cuda_check()
|
|
processing_choice = "cpu"
|
|
logging.debug("ffmpeg check being performed...")
|
|
check_ffmpeg()
|
|
|
|
|
|
llm_model = args.llm_model or None
|
|
|
|
args.time_based = False
|
|
|
|
try:
|
|
results = main(args.input_path, api_name=args.api_name, api_key=args.api_key,
|
|
num_speakers=args.num_speakers, whisper_model=args.whisper_model, offset=args.offset,
|
|
vad_filter=args.vad_filter, download_video_flag=args.video, custom_prompt=args.custom_prompt_input,
|
|
overwrite=args.overwrite, rolling_summarization=args.rolling_summarization,
|
|
detail=args.detail_level, keywords=args.keywords, llm_model=args.llm_model,
|
|
time_based=args.time_based, set_chunk_txt_by_words=set_chunk_txt_by_words,
|
|
set_max_txt_chunk_words=set_max_txt_chunk_words,
|
|
set_chunk_txt_by_sentences=set_chunk_txt_by_sentences,
|
|
set_max_txt_chunk_sentences=set_max_txt_chunk_sentences,
|
|
set_chunk_txt_by_paragraphs=set_chunk_txt_by_paragraphs,
|
|
set_max_txt_chunk_paragraphs=set_max_txt_chunk_paragraphs,
|
|
set_chunk_txt_by_tokens=set_chunk_txt_by_tokens,
|
|
set_max_txt_chunk_tokens=set_max_txt_chunk_tokens)
|
|
|
|
logging.info('Transcription process completed.')
|
|
atexit.register(cleanup_process)
|
|
except Exception as e:
|
|
logging.error('An error occurred during the transcription process.')
|
|
logging.error(str(e))
|
|
sys.exit(1)
|
|
|
|
finally:
|
|
cleanup_process()
|
|
|