jdinh commited on
Commit
af12be0
·
1 Parent(s): d56eef0

attempt to import fastai lib

Browse files
app.py CHANGED
@@ -1,19 +1,25 @@
1
- __all__ = ['learn','classify_image','categories','image','label','examples','intf']
 
2
 
3
- from huggingface_hub import fastai
 
4
  import gradio as gr
5
 
6
  learn = load_learner('model.pkl')
7
 
8
- categories = ('airbaby','airchair','airflare','headspin','hollow back')
 
9
 
10
  def classify_image(img):
11
  pred, idx, probs = learn.predict(img)
12
- return dict(zip(categories, map(float,probs)))
 
13
 
14
- image = gr.inputs.Image(shape=(192,192))
15
  label = gr.outputs.Label()
16
- examples = ['air_chair.jpg','hollowback.jpeg','airbaby.jpeg','airflare.jpeg','headspin.jpeg']
 
17
 
18
- intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
19
- intf.launch(inline=False)
 
 
1
+ __all__ = ['learn', 'classify_image', 'categories',
2
+ 'image', 'label', 'examples', 'intf']
3
 
4
+ from huggingface_hub import hf_hub_download
5
+ from fastai.learner import *
6
  import gradio as gr
7
 
8
  learn = load_learner('model.pkl')
9
 
10
+ categories = ('airbaby', 'airchair', 'airflare', 'headspin', 'hollow back')
11
+
12
 
13
  def classify_image(img):
14
  pred, idx, probs = learn.predict(img)
15
+ return dict(zip(categories, map(float, probs)))
16
+
17
 
18
+ image = gr.inputs.Image(shape=(192, 192))
19
  label = gr.outputs.Label()
20
+ examples = ['air_chair.jpg', 'hollowback.jpeg',
21
+ 'airbaby.jpeg', 'airflare.jpeg', 'headspin.jpeg']
22
 
23
+ intf = gr.Interface(fn=classify_image, inputs=image,
24
+ outputs=label, examples=examples)
25
+ intf.launch(inline=False)
app.py.3ec09d1ad4059228116e1fb9e618c954.tmp DELETED
@@ -1,20 +0,0 @@
1
- __all__ = ['learn','classify_image','categories','image','label','examples','intf']
2
-
3
- from huggingface_hub import hf_hub_download
4
- from fastai.learner import *
5
- import gradio as gr
6
-
7
- learn = load_learner('model.pkl')
8
-
9
- categories = ('airbaby','airchair','airflare','headspin','hollow back')
10
-
11
- def classify_image(img):
12
- pred, idx, probs = learn.predict(img)
13
- return dict(zip(categories, map(float,probs)))
14
-
15
- image = gr.inputs.Image(shape=(192,192))
16
- label = gr.outputs.Label()
17
- examples = ['air_chair.jpg','hollowback.jpeg','airbaby.jpeg','airflare.jpeg','headspin.jpeg']
18
-
19
- intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
20
- intf.launch(inline=False)