Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
1 |
from langchain.chains import ConversationalRetrievalChain
|
2 |
from langchain.memory import ConversationBufferMemory
|
3 |
from langchain.chat_models import ChatOpenAI
|
@@ -6,19 +10,42 @@ from langchain.embeddings.openai import OpenAIEmbeddings
|
|
6 |
from langchain.vectorstores import Chroma
|
7 |
from langchain.prompts import ChatPromptTemplate
|
8 |
from langchain.prompts.chat import SystemMessagePromptTemplate, HumanMessagePromptTemplate
|
|
|
9 |
import gradio as gr
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
embeddings = OpenAIEmbeddings()
|
12 |
-
vectordb = Chroma(
|
13 |
-
|
|
|
|
|
14 |
|
|
|
|
|
|
|
15 |
general_system_template = r"""
|
16 |
-
Eres el
|
17 |
Eres orientador de estudiantes de 15 a 17 años de colegio que no saben sobre las carreras. Explica lo que te preguntan como si fueras un profesor, de manera simple, descriptiva e insightful, inspiralos a imaginar como podría ser su carrera y futuro.
|
18 |
Proporciona mensajes breves y concisos con bullets y negritas.
|
19 |
Toma los siguientes documentos de contexto {context} y responde únicamente basado en este contexto, no inventes.
|
20 |
No menciones ningún código de curso al mencionar sus nombres (ejemplo: [PS1223])
|
21 |
-
Si te preguntan por universidades, responde elegantemente que deben de haber muy buenas opciones pero la que conoces a profundidad y destaca es la UPC (Universidad Peruana de Ciencias Aplicadas), continua respondiendo a la pregunta que
|
22 |
Menciona a la UPC únicamente si te preguntan por universidades o por la UPC.
|
23 |
"""
|
24 |
|
@@ -29,22 +56,34 @@ messages = [
|
|
29 |
]
|
30 |
qa_prompt = ChatPromptTemplate.from_messages(messages)
|
31 |
|
|
|
|
|
|
|
32 |
def create_memory():
|
33 |
return ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
34 |
|
|
|
|
|
|
|
35 |
@traceable
|
36 |
-
def pdf_qa(query, memory):
|
37 |
-
|
38 |
llm=llm,
|
39 |
retriever=vectordb.as_retriever(search_kwargs={'k': 28}),
|
40 |
combine_docs_chain_kwargs={'prompt': qa_prompt},
|
41 |
memory=memory
|
42 |
)
|
43 |
-
return
|
44 |
|
|
|
|
|
|
|
45 |
with gr.Blocks() as demo:
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
48 |
|
49 |
¿Te has preguntado cómo será tu vida después de la universidad? Te invito a explorar el fascinante camino que te espera como profesional. Juntos podemos descubrir los detalles más interesantes de la carrera que te apasiona.
|
50 |
|
@@ -55,24 +94,72 @@ with gr.Blocks() as demo:
|
|
55 |
- ¿Qué oportunidades laborales tendrás al graduarte?
|
56 |
|
57 |
Estoy aquí para responder todas tus preguntas y ayudarte a visualizar tu futuro profesional. ¡Comencemos este emocionante viaje de descubrimiento!
|
58 |
-
'''
|
|
|
|
|
|
|
59 |
msg = gr.Textbox(placeholder="Escribe aquí", label='')
|
60 |
submit = gr.Button("Enviar")
|
61 |
memory_state = gr.State(create_memory)
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
def user(query, chat_history, memory):
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
|
|
|
76 |
|
77 |
if __name__ == "__main__":
|
78 |
-
demo.launch()
|
|
|
1 |
+
import threading
|
2 |
+
import queue
|
3 |
+
import time
|
4 |
+
|
5 |
from langchain.chains import ConversationalRetrievalChain
|
6 |
from langchain.memory import ConversationBufferMemory
|
7 |
from langchain.chat_models import ChatOpenAI
|
|
|
10 |
from langchain.vectorstores import Chroma
|
11 |
from langchain.prompts import ChatPromptTemplate
|
12 |
from langchain.prompts.chat import SystemMessagePromptTemplate, HumanMessagePromptTemplate
|
13 |
+
from langchain.callbacks.base import BaseCallbackHandler
|
14 |
import gradio as gr
|
15 |
|
16 |
+
# --------------------------
|
17 |
+
# Custom Streaming Callback Handler that uses a queue.
|
18 |
+
# --------------------------
|
19 |
+
class CustomStreamingCallbackHandler(BaseCallbackHandler):
|
20 |
+
def __init__(self):
|
21 |
+
self.token_queue = queue.Queue()
|
22 |
+
|
23 |
+
def on_llm_new_token(self, token: str, **kwargs):
|
24 |
+
# Simply put the new token in the queue.
|
25 |
+
self.token_queue.put(token)
|
26 |
+
|
27 |
+
# Instantiate the custom streaming callback (do not pass the chatbot here).
|
28 |
+
stream_handler = CustomStreamingCallbackHandler()
|
29 |
+
|
30 |
+
# --------------------------
|
31 |
+
# Setup vector database and embeddings
|
32 |
+
# --------------------------
|
33 |
embeddings = OpenAIEmbeddings()
|
34 |
+
vectordb = Chroma(
|
35 |
+
persist_directory="./ai_vocacional_v2",
|
36 |
+
embedding_function=embeddings
|
37 |
+
)
|
38 |
|
39 |
+
# --------------------------
|
40 |
+
# Define prompt templates
|
41 |
+
# --------------------------
|
42 |
general_system_template = r"""
|
43 |
+
Eres el visalizador de futuros. Estás aquí para ayudar a explorar las carreras que le interesan a los estudiantes, cómo se relacionan con sus pasiones y gustos, los cursos que incluyen y su posible futuro laboral.
|
44 |
Eres orientador de estudiantes de 15 a 17 años de colegio que no saben sobre las carreras. Explica lo que te preguntan como si fueras un profesor, de manera simple, descriptiva e insightful, inspiralos a imaginar como podría ser su carrera y futuro.
|
45 |
Proporciona mensajes breves y concisos con bullets y negritas.
|
46 |
Toma los siguientes documentos de contexto {context} y responde únicamente basado en este contexto, no inventes.
|
47 |
No menciones ningún código de curso al mencionar sus nombres (ejemplo: [PS1223])
|
48 |
+
Si te preguntan por universidades, responde elegantemente que deben de haber muy buenas opciones pero la que conoces a profundidad y destaca es la UPC (Universidad Peruana de Ciencias Aplicadas), continua respondiendo a la pregunta que te hagan sobre universidades, respondiendo a la pregunta que te hagan y detallando por qué UPC destaca.
|
49 |
Menciona a la UPC únicamente si te preguntan por universidades o por la UPC.
|
50 |
"""
|
51 |
|
|
|
56 |
]
|
57 |
qa_prompt = ChatPromptTemplate.from_messages(messages)
|
58 |
|
59 |
+
# --------------------------
|
60 |
+
# Create conversation memory
|
61 |
+
# --------------------------
|
62 |
def create_memory():
|
63 |
return ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
64 |
|
65 |
+
# --------------------------
|
66 |
+
# Define the chain function that uses the LLM to answer queries
|
67 |
+
# --------------------------
|
68 |
@traceable
|
69 |
+
def pdf_qa(query, memory, llm):
|
70 |
+
chain = ConversationalRetrievalChain.from_llm(
|
71 |
llm=llm,
|
72 |
retriever=vectordb.as_retriever(search_kwargs={'k': 28}),
|
73 |
combine_docs_chain_kwargs={'prompt': qa_prompt},
|
74 |
memory=memory
|
75 |
)
|
76 |
+
return chain({"question": query})
|
77 |
|
78 |
+
# --------------------------
|
79 |
+
# Build the Gradio Interface
|
80 |
+
# --------------------------
|
81 |
with gr.Blocks() as demo:
|
82 |
+
# Chatbot component with an initial greeting.
|
83 |
+
chatbot = gr.Chatbot(
|
84 |
+
label="Visualizador de futuros",
|
85 |
+
value=[[None,
|
86 |
+
''' ¡Hola! Soy el Visualizador de Futuros Profesionales.
|
87 |
|
88 |
¿Te has preguntado cómo será tu vida después de la universidad? Te invito a explorar el fascinante camino que te espera como profesional. Juntos podemos descubrir los detalles más interesantes de la carrera que te apasiona.
|
89 |
|
|
|
94 |
- ¿Qué oportunidades laborales tendrás al graduarte?
|
95 |
|
96 |
Estoy aquí para responder todas tus preguntas y ayudarte a visualizar tu futuro profesional. ¡Comencemos este emocionante viaje de descubrimiento!
|
97 |
+
'''
|
98 |
+
]]
|
99 |
+
)
|
100 |
+
|
101 |
msg = gr.Textbox(placeholder="Escribe aquí", label='')
|
102 |
submit = gr.Button("Enviar")
|
103 |
memory_state = gr.State(create_memory)
|
104 |
+
|
105 |
+
# Create the ChatOpenAI model with streaming enabled and our custom callback.
|
106 |
+
llm = ChatOpenAI(
|
107 |
+
temperature=0,
|
108 |
+
model_name='gpt-4o',
|
109 |
+
streaming=True,
|
110 |
+
callbacks=[stream_handler]
|
111 |
+
)
|
112 |
+
|
113 |
+
# --------------------------
|
114 |
+
# Generator function that runs the chain in a separate thread and polls the token queue.
|
115 |
+
# --------------------------
|
116 |
def user(query, chat_history, memory):
|
117 |
+
# Append the user's message with an empty bot response.
|
118 |
+
chat_history.append((query, ""))
|
119 |
+
# Immediately yield an update so the user's message appears.
|
120 |
+
yield "", chat_history, memory
|
121 |
+
|
122 |
+
# Container for the final chain result.
|
123 |
+
final_result = [None]
|
124 |
+
|
125 |
+
# Define a helper function to run the chain.
|
126 |
+
def run_chain():
|
127 |
+
result = pdf_qa(query, memory, llm)
|
128 |
+
final_result[0] = result
|
129 |
+
# Signal end-of-stream by putting a sentinel value.
|
130 |
+
stream_handler.token_queue.put(None)
|
131 |
+
|
132 |
+
# Run the chain in a separate thread.
|
133 |
+
thread = threading.Thread(target=run_chain)
|
134 |
+
thread.start()
|
135 |
|
136 |
+
# Poll the token queue for new tokens and yield updated chat history.
|
137 |
+
current_response = ""
|
138 |
+
while True:
|
139 |
+
try:
|
140 |
+
token = stream_handler.token_queue.get(timeout=0.1)
|
141 |
+
except queue.Empty:
|
142 |
+
token = None
|
143 |
|
144 |
+
# A None token is our signal for end-of-stream.
|
145 |
+
if token is None:
|
146 |
+
if not thread.is_alive():
|
147 |
+
break
|
148 |
+
else:
|
149 |
+
continue
|
150 |
+
current_response += token
|
151 |
+
chat_history[-1] = (query, current_response)
|
152 |
+
yield "", chat_history, memory
|
153 |
|
154 |
+
thread.join()
|
155 |
+
# Optionally, update the final answer if it differs from the streaming tokens.
|
156 |
+
if final_result[0] and "answer" in final_result[0]:
|
157 |
+
chat_history[-1] = (query, final_result[0]["answer"])
|
158 |
+
yield "", chat_history, memory
|
159 |
|
160 |
+
# Wire up the generator function to Gradio components with queue enabled.
|
161 |
+
submit.click(user, [msg, chatbot, memory_state], [msg, chatbot, memory_state], queue=True)
|
162 |
+
msg.submit(user, [msg, chatbot, memory_state], [msg, chatbot, memory_state], queue=True)
|
163 |
|
164 |
if __name__ == "__main__":
|
165 |
+
demo.queue().launch()
|