jdmorzan commited on
Commit
9f7d1a3
verified
1 Parent(s): d805a88

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +74 -49
app.py CHANGED
@@ -1,63 +1,88 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
 
 
 
 
 
 
 
 
42
  """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
  if __name__ == "__main__":
63
  demo.launch()
 
1
+ from langchain.chains import ConversationalRetrievalChain
2
+ from langchain.memory import ConversationBufferMemory, ConversationSummaryMemory
3
+ from langchain.chat_models import ChatOpenAI
4
 
 
 
 
 
5
 
6
+ from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
7
+ from langchain.embeddings.openai import OpenAIEmbeddings
8
+ from langchain.vectorstores import Chroma
9
 
10
+ import os
11
+ import sys
 
 
 
 
 
 
 
12
 
 
 
 
 
 
13
 
14
+ from langchain.schema import (
15
+ AIMessage,
16
+ HumanMessage,
17
+ SystemMessage
18
+ )
19
 
20
+ from langchain.prompts import ChatPromptTemplate
21
+ from langchain.prompts.chat import SystemMessagePromptTemplate, HumanMessagePromptTemplate
22
 
23
+ #embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
24
+ embeddings = OpenAIEmbeddings(api_key='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')
 
 
 
 
 
 
25
 
26
+ #vectordb=Chroma.from_documents(document_chunks,embedding=embeddings, persist_directory='./ai_vocacional_v2')
27
+ vectordb = Chroma(persist_directory="./ai_vocacional_v2", embedding_function=embeddings)
28
 
29
+ llm=ChatOpenAI(temperature=0, model_name='gpt-4o-mini', api_key='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')
30
+
31
+ memory = ConversationBufferMemory(
32
+ memory_key='chat_history',
33
+ return_messages=True)
34
+
35
+ general_system_template = r"""
36
+ Eres un asistente AI avanzado especializado en asesorar a alumnos con su ingreso a la universidad.
37
+ Toma los siguientes documentos de contexto {context} y responde 煤nicamente basado en este contexto.
38
  """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
+ general_user_template = "Pregunta:```{question}```"
41
+ messages = [
42
+ SystemMessagePromptTemplate.from_template(general_system_template),
43
+ HumanMessagePromptTemplate.from_template(general_user_template)
44
+ ]
45
+ qa_prompt = ChatPromptTemplate.from_messages( messages )
46
+
47
+ pdf_qa = ConversationalRetrievalChain.from_llm(
48
+ llm = llm,
49
+ retriever=vectordb.as_retriever(search_kwargs={'k':16})
50
+ , combine_docs_chain_kwargs={'prompt': qa_prompt},
51
+ memory = memory#,max_tokens_limit=4000
52
+ )
53
+
54
+ #Clarification: Si la pregunta del usuario es vaga o le faltan detalles importantes para dar una respuseta, debes realizar preguntas de clarificaci贸n para entender sus necesidades y darle la asistencia adecuada.
55
+ #Constraints: Debes responder solamente con la informacion disponible y saludar solo una vez. En caso no tengas una respuesta o no est茅s seguro, no inventes respuesta.
56
+
57
+ import gradio as gr
58
+ # Define chat interface
59
+ with gr.Blocks() as demo:
60
+ chatbot = gr.Chatbot()
61
+ msg = gr.Textbox()
62
+ clear = gr.Button("Clear")
63
+ chat_history = []
64
+
65
+ def user(query, chat_history):
66
+ print("User query:", query)
67
+ print("Chat history:", chat_history)
68
+
69
+ # Convert chat history to list of tuples
70
+ chat_history_tuples = []
71
+ for message in chat_history:
72
+ chat_history_tuples.append((message[0], message[1]))
73
+
74
+ # Get result from QA chain
75
+ result = pdf_qa({"question": query})#, "chat_history": chat_history_tuples})
76
+
77
+ # Append user message and response to chat history
78
+ chat_history.append((query, result["answer"]))
79
+ print("Updated chat history:", chat_history)
80
+
81
+ return gr.update(value=""), chat_history
82
+
83
+
84
+ msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False)
85
+ clear.click(lambda: None, None, chatbot, queue=False)
86
 
87
  if __name__ == "__main__":
88
  demo.launch()