Spaces:
Paused
Paused
File size: 30,952 Bytes
89cbc4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 |
#####################################################
### DOCUMENT PROCESSOR [MODELS]
#####################################################
# Jonathan Wang
# ABOUT:
# This project creates an app to chat with PDFs.
# This is the LANGUAGE MODELS
# that are used in the document reader.
#####################################################
## TODOS:
# <!> Add support for vLLM / AWQ / GPTQ models. (probably not going to be done due to lack of attention scores)
# Add KTransformers backend?
# https://github.com/kvcache-ai/ktransformers
# https://github.com/Tada-AI/pdf_parser
#####################################################
## IMPORTS:
from __future__ import annotations
import gc
import logging
import sys
from typing import (
Any,
Callable,
Dict,
List,
Optional,
Protocol,
Sequence,
Union,
cast,
runtime_checkable,
)
import streamlit as st
import torch
from llama_index.core.base.embeddings.base import BaseEmbedding
from llama_index.core.base.llms.base import BaseLLM
from llama_index.core.base.llms.generic_utils import (
messages_to_prompt as generic_messages_to_prompt,
)
from llama_index.core.base.llms.types import (
ChatMessage,
ChatResponse,
ChatResponseGen,
CompletionResponse,
CompletionResponseGen,
LLMMetadata,
MessageRole,
)
from llama_index.core.bridge.pydantic import Field, PrivateAttr
from llama_index.core.callbacks import CallbackManager
from llama_index.core.constants import DEFAULT_CONTEXT_WINDOW, DEFAULT_NUM_OUTPUTS
from llama_index.core.llms.callbacks import (
llm_chat_callback,
llm_completion_callback,
)
from llama_index.core.multi_modal_llms import MultiModalLLM
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.core.prompts.base import PromptTemplate
from llama_index.core.schema import ImageDocument, ImageNode
from llama_index.core.types import BaseOutputParser, PydanticProgramMode
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM
from PIL import Image as PILImage
from transformers import (
AutoImageProcessor,
AutoModelForVision2Seq,
AutoTokenizer,
LogitsProcessor,
QuantoConfig,
StoppingCriteria,
StoppingCriteriaList,
)
from typing_extensions import Annotated
# from wtpsplit import SaT # Sentence segmentation model. Dropping this. Requires adapters=0.2.1->Transformers=4.39.3 | Phi3 Vision requires Transformers 4.40.2
## NOTE: Proposal for LAZY LOADING packages for running LLMS:
# Currently not done because empahsis is on local inference w/ ability to get Attention Scores, which is not yet supported in non-HF Transformers methods.
## LLamacpp:
# from llama_index.llms.llama_cpp import LlamaCPP
# from llama_index.llms.llama_cpp.llama_utils import (
# messages_to_prompt,
# completion_to_prompt
# )
## HF Transformers LLM:
# from transformers import AutoTokenizer, BitsAndBytesConfig
# from llama_index.llms.huggingface import HuggingFaceLLM
## GROQ
# from llama_index.llms.groq import Groq
#####################################################
### SETTINGS:
DEFAULT_HF_MULTIMODAL_LLM = "Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5"
DEFAULT_HF_MULTIMODAL_CONTEXT_WINDOW = 1024
DEFAULT_HF_MULTIMODAL_MAX_NEW_TOKENS = 1024
#####################################################
### CODE:
logger = logging.getLogger(__name__)
@st.cache_resource
def get_embedder(
model_path: str = "mixedbread-ai/mxbai-embed-large-v1",
device: str = "cuda", # 'cpu' is unbearably slow
) -> BaseEmbedding:
"""Given the path to an embedding model, load it."""
# NOTE: okay we definitely could have not made this wrapper, but shrug
return HuggingFaceEmbedding(
model_path,
device=device
)
@st.cache_resource
def get_reranker(
model_path: str = "mixedbread-ai/mxbai-rerank-large-v1",
top_n: int = 3,
device: str = "cpu", # 'cuda' if we were rich
) -> SentenceTransformerRerank: # technically this is a BaseNodePostprocessor, but that seems too abstract.
"""Given the path to a reranking model, load it."""
# NOTE: okay we definitely could have not made this wrapper, but shrug
return SentenceTransformerRerank(
model=model_path,
top_n=top_n,
device=device
)
## LLM Options Below
# def _get_llamacpp_llm(
# model_path: str,
# model_seed: int = 31415926,
# model_temperature: float = 1e-64, # ideally 0, but HF-type doesn't allow that. # a good dev might use sys.float_info()['min']
# model_context_length: Optional[int] = 8192,
# model_max_new_tokens: Optional[int] = 1024,
# ) -> BaseLLM:
# """Load a LlamaCPP model using GPU and other sane defaults."""
# # Lazy Loading
# from llama_index.llms.llama_cpp import LlamaCPP
# from llama_index.llms.llama_cpp.llama_utils import (
# messages_to_prompt,
# completion_to_prompt
# )
# # Arguments to Pass
# llm = LlamaCPP(
# model_path=model_path,
# temperature=model_temperature,
# max_new_tokens=model_max_new_tokens,
# context_window=model_context_length,
# # kwargs to pass to __call__()
# generate_kwargs={'seed': model_seed}, # {'temperature': TEMPERATURE, 'top_p':0.7, 'min_p':0.1, 'seed': MODEL_SEED},
# # kwargs to pass to __init__()
# # set to at least 1 to use GPU
# model_kwargs={'n_gpu_layers': -1, 'n_threads': os.cpu_count()-1}, #, 'rope_freq_scale': 0.83, 'rope_freq_base': 20000},
# # transform inputs into model format
# messages_to_prompt=messages_to_prompt,
# completion_to_prompt=completion_to_prompt,
# verbose=True,
# )
# return (llm)
@st.cache_resource
def _get_hf_llm(
model_path: str,
model_temperature: float = sys.float_info.min, # ideally 0, but HF-type doesn't allow that. # a good dev might use sys.float_info()['min'] to confirm (?)
model_context_length: int | None = 16384,
model_max_new_tokens: int | None = 2048,
hf_quant_level: int | None = 8,
) -> BaseLLM:
"""Load a Huggingface-Transformers based model using sane defaults."""
# Fix temperature if needed; HF implementation complains about it being zero
model_temperature = max(sys.float_info.min, model_temperature)
# Get Quantization with BitsandBytes
quanto_config = None # NOTE: by default, no quantization.
if (hf_quant_level == 4):
# bnb_config = BitsAndBytesConfig(
# # load_in_8bit=True,
# load_in_4bit=True,
# # bnb_4bit_use_double_quant=True,
# bnb_4bit_quant_type="nf4",
# bnb_4bit_compute_dtype='bfloat16', # NOTE: Tesla T4 GPUs are too crappy for bfloat16
# # bnb_4bit_compute_dtype='float16'
# )
quanto_config = QuantoConfig(
weights="int4" # there's also 'int2' if you're crazy...
)
elif (hf_quant_level == 8):
# bnb_config = BitsAndBytesConfig(
# load_in_8bit=True
# )
quanto_config = QuantoConfig(
weights="int8"
)
# Get Stopping Tokens for Llama3 based models, because they're /special/ and added a new one.
tokenizer = AutoTokenizer.from_pretrained(
model_path
)
stopping_ids = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>"),
]
return HuggingFaceLLM(
model_name=model_path,
tokenizer_name=model_path,
stopping_ids=stopping_ids,
max_new_tokens=model_max_new_tokens or DEFAULT_NUM_OUTPUTS,
context_window=model_context_length or DEFAULT_CONTEXT_WINDOW,
tokenizer_kwargs={"trust_remote_code": True},
model_kwargs={"trust_remote_code": True, "quantization_config": quanto_config},
generate_kwargs={
"do_sample": not model_temperature > sys.float_info.min,
"temperature": model_temperature,
},
is_chat_model=True,
)
@st.cache_resource
def get_llm(
model_path: str = "meta-llama/Meta-Llama-3.1-8B-Instruct",
model_temperature: float = 0, # ideally 0, but HF-type doesn't allow that. # a good dev might use sys.float_info()['min']
model_context_length: int | None = 8192,
model_max_new_tokens: int | None = 1024,
hf_quant_level: int | None = 8, # 4-bit / 8-bit loading for HF models
) -> BaseLLM:
"""
Given the path to a LLM, determine the type, load it in and convert it into a Llamaindex-compatable LLM.
NOTE: I chose to set some "sane" defaults, so it's probably not as flexible as some other dev would like.
"""
# if (model_path_extension == ".gguf"):
# ##### LLAMA.CPP
# return(_get_llamacpp_llm(model_path, model_seed, model_temperature, model_context_length, model_max_new_tokens))
# TODO(Jonathan Wang): Consider non-HF-Transformers backends
# vLLM support for AWQ/GPTQ models
# I guess reluctantly AutoAWQ and AutoGPTQ packages.
# Exllamav2 is kinda dead IMO.
# else:
#### No extension or weird fake extension suggests a folder, i.e., the base model from HF
return(_get_hf_llm(model_path=model_path, model_temperature=model_temperature, model_context_length=model_context_length, model_max_new_tokens=model_max_new_tokens, hf_quant_level=hf_quant_level))
# @st.cache_resource
# def get_llm() -> BaseLLM:
# from llama_index.llms.groq import Groq
# llm = Groq(
# model='llama-3.1-8b-instant', # old: 'llama3-8b-8192'
# api_key=os.environ.get('GROQ_API_KEY'),
# )
# return (llm)
class EosLogitProcessor(LogitsProcessor):
"""Special snowflake processor for Salesforce Vision Model."""
def __init__(self, eos_token_id: int, end_token_id: int):
super().__init__()
self.eos_token_id = eos_token_id
self.end_token_id = end_token_id
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
if input_ids.size(1) > 1: # Expect at least 1 output token.
forced_eos = torch.full((scores.size(1),), -float("inf"), device=input_ids.device)
forced_eos[self.eos_token_id] = 0
# Force generation of EOS after the <|end|> token.
scores[input_ids[:, -1] == self.end_token_id] = forced_eos
return scores
# NOTE: These two protocols are needed to appease mypy
# https://github.com/run-llama/llama_index/blob/5238b04c183119b3035b84e2663db115e63dcfda/llama-index-core/llama_index/core/llms/llm.py#L89
@runtime_checkable
class MessagesImagesToPromptType(Protocol):
def __call__(self, messages: Sequence[ChatMessage], images: Sequence[ImageDocument], **kwargs: Any) -> str:
pass
MessagesImagesToPromptCallable = Annotated[
Optional[MessagesImagesToPromptType],
WithJsonSchema({"type": "string"}),
]
# https://huggingface.co/Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5/blob/main/batch_inference.ipynb
class HuggingFaceMultiModalLLM(MultiModalLLM):
"""Supposed to be a wrapper around HuggingFace's Vision LLMS.
Currently only supports one model type: Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5
"""
model_name: str = Field(
description='The multi-modal huggingface LLM to use. Currently only using Phi3.',
default=DEFAULT_HF_MULTIMODAL_LLM
)
context_window: int = Field(
default=DEFAULT_HF_MULTIMODAL_CONTEXT_WINDOW,
description="The maximum number of tokens available for input.",
gt=0,
)
max_new_tokens: int = Field(
default=DEFAULT_HF_MULTIMODAL_MAX_NEW_TOKENS,
description="The maximum number of tokens to generate.",
gt=0,
)
system_prompt: str = Field(
default="",
description=(
"The system prompt, containing any extra instructions or context. "
"The model card on HuggingFace should specify if this is needed."
),
)
query_wrapper_prompt: PromptTemplate = Field(
default=PromptTemplate("{query_str}"),
description=(
"The query wrapper prompt, containing the query placeholder. "
"The model card on HuggingFace should specify if this is needed. "
"Should contain a `{query_str}` placeholder."
),
)
tokenizer_name: str = Field(
default=DEFAULT_HF_MULTIMODAL_LLM,
description=(
"The name of the tokenizer to use from HuggingFace. "
"Unused if `tokenizer` is passed in directly."
),
)
processor_name: str = Field(
default=DEFAULT_HF_MULTIMODAL_LLM,
description=(
"The name of the processor to use from HuggingFace. "
"Unused if `processor` is passed in directly."
),
)
device_map: str = Field(
default="auto", description="The device_map to use. Defaults to 'auto'."
)
stopping_ids: list[int] = Field(
default_factory=list,
description=(
"The stopping ids to use. "
"Generation stops when these token IDs are predicted."
),
)
tokenizer_outputs_to_remove: list = Field(
default_factory=list,
description=(
"The outputs to remove from the tokenizer. "
"Sometimes huggingface tokenizers return extra inputs that cause errors."
),
)
tokenizer_kwargs: dict = Field(
default_factory=dict, description="The kwargs to pass to the tokenizer."
)
processor_kwargs: dict = Field(
default_factory=dict, description="The kwargs to pass to the processor."
)
model_kwargs: dict = Field(
default_factory=dict,
description="The kwargs to pass to the model during initialization.",
)
generate_kwargs: dict = Field(
default_factory=dict,
description="The kwargs to pass to the model during generation.",
)
is_chat_model: bool = Field(
default=False,
description=(
"Whether the model can have multiple messages passed at once, like the OpenAI chat API."
# LLMMetadata.__fields__["is_chat_model"].field_info.description
# + " Be sure to verify that you either pass an appropriate tokenizer "
# "that can convert prompts to properly formatted chat messages or a "
# "`messages_to_prompt` that does so."
),
)
messages_images_to_prompt: MessagesImagesToPromptCallable = Field(
default=generic_messages_to_prompt,
description="A function that takes in a list of messages and images and returns a prompt string.",
)
_model: Any = PrivateAttr()
_tokenizer: Any = PrivateAttr()
# TODO(Jonathan Wang): We need to add a separate field for AutoProcessor as opposed to ImageProcessors.
_processor: Any = PrivateAttr()
_stopping_criteria: Any = PrivateAttr()
def __init__(
self,
context_window: int = DEFAULT_HF_MULTIMODAL_CONTEXT_WINDOW,
max_new_tokens: int = DEFAULT_HF_MULTIMODAL_MAX_NEW_TOKENS,
query_wrapper_prompt: Union[str, PromptTemplate] = "{query_str}",
tokenizer_name: str = DEFAULT_HF_MULTIMODAL_LLM,
processor_name: str = DEFAULT_HF_MULTIMODAL_LLM,
model_name: str = DEFAULT_HF_MULTIMODAL_LLM,
model: Any | None = None,
tokenizer: Any | None = None,
processor: Any | None = None,
device_map: str = "auto",
stopping_ids: list[int] | None = None,
tokenizer_kwargs: dict[str, Any] | None = None,
processor_kwargs: dict[str, Any] | None = None,
tokenizer_outputs_to_remove: list[str] | None = None,
model_kwargs: dict[str, Any] | None = None,
generate_kwargs: dict[str, Any] | None = None,
is_chat_model: bool = False,
callback_manager: CallbackManager | None = None,
system_prompt: str = "",
messages_images_to_prompt: Callable[[Sequence[ChatMessage], Sequence[ImageDocument]], str] | None = None,
# completion_to_prompt: Callable[[str], str] | None = None,
# pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
# output_parser: BaseOutputParser | None = None,
) -> None:
logger.info(f"CUDA Memory Pre-AutoModelForVision2Seq: {torch.cuda.mem_get_info()}")
# Salesforce one is a AutoModelForVision2Seq, but not AutoCausalLM which is more common.
model = model or AutoModelForVision2Seq.from_pretrained(
model_name,
device_map=device_map,
trust_remote_code=True,
**(model_kwargs or {})
)
logger.info(f"CUDA Memory Post-AutoModelForVision2Seq: {torch.cuda.mem_get_info()}")
# check context_window
config_dict = model.config.to_dict()
model_context_window = int(
config_dict.get("max_position_embeddings", context_window)
)
if model_context_window < context_window:
logger.warning(
f"Supplied context_window {context_window} is greater "
f"than the model's max input size {model_context_window}. "
"Disable this warning by setting a lower context_window."
)
context_window = model_context_window
processor_kwargs = processor_kwargs or {}
if "max_length" not in processor_kwargs:
processor_kwargs["max_length"] = context_window
# NOTE: Sometimes models (phi-3) will use AutoProcessor and include the tokenizer within it.
logger.info(f"CUDA Memory Pre-Processor: {torch.cuda.mem_get_info()}")
processor = processor or AutoImageProcessor.from_pretrained(
processor_name or model_name,
trust_remote_code=True,
**processor_kwargs
)
logger.info(f"CUDA Memory Post-Processor: {torch.cuda.mem_get_info()}")
tokenizer = tokenizer or AutoTokenizer.from_pretrained(
tokenizer_name or model_name,
trust_remote_code=True,
**(tokenizer_kwargs or {})
)
logger.info(f"CUDA Memory Post-Tokenizer: {torch.cuda.mem_get_info()}")
# Tokenizer-Model disagreement
if (hasattr(tokenizer, "name_or_path") and tokenizer.name_or_path != model_name): # type: ignore (checked for attribute)
logger.warning(
f"The model `{model_name}` and processor `{getattr(tokenizer, 'name_or_path', None)}` "
f"are different, please ensure that they are compatible."
)
# Processor-Model disagreement
if (hasattr(processor, "name_or_path") and getattr(processor, "name_or_path", None) != model_name):
logger.warning(
f"The model `{model_name}` and processor `{getattr(processor, 'name_or_path', None)}` "
f"are different, please ensure that they are compatible."
)
# setup stopping criteria
stopping_ids_list = stopping_ids or []
class StopOnTokens(StoppingCriteria):
def __call__(
self,
input_ids: torch.LongTensor,
scores: torch.FloatTensor,
**kwargs: Any,
) -> bool:
return any(input_ids[0][-1] == stop_id for stop_id in stopping_ids_list)
stopping_criteria = StoppingCriteriaList([StopOnTokens()])
if isinstance(query_wrapper_prompt, str):
query_wrapper_prompt = PromptTemplate(query_wrapper_prompt)
messages_images_to_prompt = messages_images_to_prompt or self._processor_messages_to_prompt
# Initiate standard LLM
super().__init__(
callback_manager=callback_manager or CallbackManager([]),
)
logger.info(f"CUDA Memory Post-SuperInit: {torch.cuda.mem_get_info()}")
# Initiate remaining fields
self._model = model
self._tokenizer = tokenizer
self._processor = processor
logger.info(f"CUDA Memory Post-Init: {torch.cuda.mem_get_info()}")
self._stopping_criteria = stopping_criteria
self.model_name = model_name
self.context_window=context_window
self.max_new_tokens=max_new_tokens
self.system_prompt=system_prompt
self.query_wrapper_prompt=query_wrapper_prompt
self.tokenizer_name=tokenizer_name
self.processor_name=processor_name
self.model_name=model_name
self.device_map=device_map
self.stopping_ids=stopping_ids or []
self.tokenizer_outputs_to_remove=tokenizer_outputs_to_remove or []
self.tokenizer_kwargs=tokenizer_kwargs or {}
self.processor_kwargs=processor_kwargs or {}
self.model_kwargs=model_kwargs or {}
self.generate_kwargs=generate_kwargs or {}
self.is_chat_model=is_chat_model
self.messages_images_to_prompt=messages_images_to_prompt
# self.completion_to_prompt=completion_to_prompt,
# self.pydantic_program_mode=pydantic_program_mode,
# self.output_parser=output_parser,
@classmethod
def class_name(cls) -> str:
return "HuggingFace_MultiModal_LLM"
@property
def metadata(self) -> LLMMetadata:
"""LLM metadata."""
return LLMMetadata(
context_window=self.context_window,
num_output=self.max_new_tokens,
model_name=self.model_name,
is_chat_model=self.is_chat_model,
)
def _processor_messages_to_prompt(self, messages: Sequence[ChatMessage], images: Sequence[ImageDocument]) -> str:
### TODO(Jonathan Wang): Make this work generically. Currently we're building for `Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5`
"""Converts a list of messages into a prompt for the multimodal LLM.
NOTE: we assume for simplicity here that these images are related, and not the user bouncing between multiple different topics. Thus, we send them all at once.
Args:
messages (Sequence[ChatMessage]): A list of the messages to convert, where each message is a dict containing the message role and content.
images (Sequence[ImageDocument]): The number of images the user is passing to the MultiModalLLM.
Returns:
str: The prompt.
"""
# NOTE: For `Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5`, we actually ignore the `images`; no plaaceholders.
"""Use the tokenizer to convert messages to prompt. Fallback to generic."""
if hasattr(self._tokenizer, "apply_chat_template"):
messages_dict = [
{"role": message.role.value, "content": message.content}
for message in messages
]
return self._tokenizer.apply_chat_template(
messages_dict, tokenize=False, add_generation_prompt=True
)
return generic_messages_to_prompt(messages)
@llm_completion_callback()
def complete(
self,
prompt: str,
image_documents: ImageNode | List[ImageNode] | ImageDocument | List[ImageDocument], # this also takes ImageDocument which inherits from ImageNode.
formatted: bool = False,
**kwargs: Any
) -> CompletionResponse:
"""Given a prompt and image node(s), get the Phi-3 Vision prompt"""
# Handle images input
# https://huggingface.co/Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5/blob/main/demo.ipynb
batch_image_list = []
batch_image_sizes = []
batch_prompt = []
# Fix image_documents input typing
if (not isinstance(image_documents, list)):
image_documents = [image_documents]
image_documents = [cast(ImageDocument, image) for image in image_documents] # we probably won't be using the Document features, so I think this is fine.
# Convert input images into PIL images for the model.
image_list = []
image_sizes = []
for image in image_documents:
# NOTE: ImageDocument inherets from ImageNode. We'll go extract the image.
image_io = image.resolve_image()
image_pil = PILImage.open(image_io)
image_list.append(self._processor([image_pil], image_aspect_ratio='anyres')['pixel_values'].to(self._model.device))
image_sizes.append(image_pil.size)
batch_image_list.append(image_list)
batch_image_sizes.append(image_sizes)
batch_prompt.append(prompt) # only one question per image
# Get the prompt
if not formatted and self.query_wrapper_prompt:
prompt = self.query_wrapper_prompt.format(query_str=prompt)
prompt_sequence = []
if self.system_prompt:
prompt_sequence.append(ChatMessage(role=MessageRole.SYSTEM, content=self.system_prompt))
prompt_sequence.append(ChatMessage(role=MessageRole.USER, content=prompt))
prompt = self.messages_images_to_prompt(messages=prompt_sequence, images=image_documents)
# Get the model input
batch_inputs = {
"pixel_values": batch_image_list
}
language_inputs = self._tokenizer(
[prompt],
return_tensors="pt",
padding='longest', # probably not needed.
max_length=self._tokenizer.model_max_length,
truncation=True
).to(self._model.device)
# TODO: why does the example cookbook have this weird conversion to Cuda instead of .to(device)?
# language_inputs = {name: tensor.cuda() for name, tensor in language_inputs.items()}
batch_inputs.update(language_inputs)
gc.collect()
torch.cuda.empty_cache()
# remove keys from the tokenizer if needed, to avoid HF errors
# TODO: this probably is broken and wouldn't work.
for key in self.tokenizer_outputs_to_remove:
if key in batch_inputs:
batch_inputs.pop(key, None)
# Get output
tokens = self._model.generate(
**batch_inputs,
image_sizes=batch_image_sizes,
pad_token_id=self._tokenizer.pad_token_id,
eos_token_id=self._tokenizer.eos_token_id,
max_new_tokens=self.max_new_tokens,
stopping_criteria=self._stopping_criteria,
# NOTE: Special snowflake processor for Salesforce XGEN Phi3 Mini.
logits_processor=[EosLogitProcessor(eos_token_id=self._tokenizer.eos_token_id, end_token_id=32007)],
**self.generate_kwargs
)
gc.collect()
torch.cuda.empty_cache()
# completion_tokens = tokens[:, batch_inputs['input_ids'].shape[1]:]
completion = self._tokenizer.batch_decode(
tokens,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0]
gc.collect()
torch.cuda.empty_cache()
output = CompletionResponse(text=completion, raw={'model_output': tokens})
# Clean stuff up
del batch_image_list, batch_image_sizes, batch_inputs, tokens, completion
gc.collect()
torch.cuda.empty_cache()
# Return the completion
return output
@llm_completion_callback()
def stream_complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseGen:
raise NotImplementedError
@llm_chat_callback()
def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
raise NotImplementedError
@llm_chat_callback()
def stream_chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponseGen:
raise NotImplementedError
@llm_completion_callback()
async def acomplete(
self,
prompt: str,
images: ImageNode | List[ImageNode], # this also takes ImageDocument which inherits from ImageNode.
formatted: bool = False,
**kwargs: Any
) -> CompletionResponse:
raise NotImplementedError
@llm_completion_callback()
async def astream_complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseGen:
raise NotImplementedError
@llm_chat_callback()
async def achat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
raise NotImplementedError
@llm_chat_callback()
async def astream_chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponseGen:
raise NotImplementedError
# @st.cache_resource()
# def get_multimodal_llm(**kwargs) -> MultiModalLLM:
# vision_llm = OpenAIMultiModal(
# model='gpt-4o-mini',
# temperature=0,
# max_new_tokens=512,
# image_detail='auto'
# )
# return (vision_llm)
@st.cache_resource
def get_multimodal_llm(
model_name: str = DEFAULT_HF_MULTIMODAL_LLM,
device_map: str = "cuda", # does not support 'auto'
processor_kwargs: dict[str, Any] | None = None,
model_kwargs: dict[str, Any] | None = None, # {'torch_dtype': torch.bfloat16}, # {'torch_dtype': torch.float8_e5m2}
generate_kwargs: dict[str, Any] | None = None, # from the example cookbook
hf_quant_level: int | None = 8,
) -> HuggingFaceMultiModalLLM:
# Get default generate kwargs
if model_kwargs is None:
model_kwargs = {}
if processor_kwargs is None:
processor_kwargs = {}
if generate_kwargs is None:
generate_kwargs = {
"temperature": sys.float_info.min,
"top_p": None,
"num_beams": 1
# NOTE: we hack in EOSLogitProcessor in the HuggingFaceMultiModalLLM because it allows us to get the tokenizer.eos_token_id
}
# Get Quantization with Quanto
quanto_config = None # NOTE: by default, no quantization.
if (hf_quant_level == 4):
# bnb_config = BitsAndBytesConfig(
# # load_in_8bit=True,
# load_in_4bit=True,
# # bnb_4bit_use_double_quant=True,
# bnb_4bit_quant_type="nf4",
# bnb_4bit_compute_dtype='bfloat16', # NOTE: Tesla T4 GPUs are too crappy for bfloat16
# # bnb_4bit_compute_dtype='float16'
# )
quanto_config = QuantoConfig(
weights="int4" # there's also 'int2' if you're crazy...
)
elif (hf_quant_level == 8):
# bnb_config = BitsAndBytesConfig(
# load_in_8bit=True
# )
quanto_config = QuantoConfig(
weights="int8"
)
if (quanto_config is not None):
model_kwargs["quantization_config"] = quanto_config
return HuggingFaceMultiModalLLM(
model_name=model_name,
device_map=device_map,
processor_kwargs=processor_kwargs,
model_kwargs=model_kwargs,
generate_kwargs=generate_kwargs,
max_new_tokens=1024 # from the example cookbook
)
|