File size: 10,687 Bytes
947767a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d419c1d
947767a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2c4ee8
947767a
 
d419c1d
947767a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


import os
import shutil

from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    AutoConfig,
    BitsAndBytesConfig,
)
import torch
from llava.model import *
from llava.constants import (
    DEFAULT_IMAGE_PATCH_TOKEN,
    DEFAULT_IM_START_TOKEN,
    DEFAULT_IM_END_TOKEN,
)


def load_pretrained_model(
    model_path,
    model_base,
    model_name,
    load_8bit=False,
    load_4bit=False,
    device_map="auto",
    load_bf16=False,
):
    kwargs = {"device_map": device_map}

    if load_8bit:
        kwargs["load_in_8bit"] = True
    elif load_4bit:
        kwargs["load_in_4bit"] = True
        kwargs["quantization_config"] = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
        )
    elif load_bf16:
        kwargs["torch_dtype"] = torch.bfloat16
    else:
        kwargs["torch_dtype"] = torch.float16

    if "llava" in model_name.lower():
        # Load LLaVA model
        if "lora" in model_name.lower() and model_base is not None:
            lora_cfg_pretrained = AutoConfig.from_pretrained(model_path)
            tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
            print("Loading LLaVA from base model...")
            model = LlavaLlamaForCausalLM.from_pretrained(
                model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs
            )
            if model.get_vision_tower() is not None and not model.get_vision_tower().is_loaded:
                model.get_vision_tower().load_model()

            # if the parameters have been ever modified during model training,
            # then for some reason, the layer will have the correct shape
            # but the weight will have a wrong shape
            # the code below fix this weird shape mismatch issue
            token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
            if model.lm_head.weight.shape[0] != token_num:
                model.lm_head.weight = torch.nn.Parameter(
                    torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)
                )
                model.model.embed_tokens.weight = torch.nn.Parameter(
                    torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)
                )

            # if the parameters have been ever modified during model training,
            # then for some reason, the layer will have the correct shape
            # but the weight will have a wrong shape
            # the code below fix this weird shape mismatch issue
            if model.get_vision_tower() is not None:
                mm_projector_in, mm_projector_out = (
                    model.model.mm_projector.in_features,
                    model.model.mm_projector.out_features,
                )
                if (
                    model.model.mm_projector.weight.shape[1] != mm_projector_in
                    or model.model.mm_projector.weight.shape[0] != mm_projector_out
                ):
                    model.model.mm_projector.weight = torch.nn.Parameter(
                        torch.empty(
                            mm_projector_out,
                            mm_projector_in,
                            device=model.device,
                            dtype=model.dtype,
                        )
                    )
                    model.model.mm_projector.bias = torch.nn.Parameter(
                        torch.empty(mm_projector_out, device=model.device, dtype=model.dtype)
                    )

            print("Loading additional LLaVA weights...")
            if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")):
                non_lora_trainables = torch.load(
                    os.path.join(model_path, "non_lora_trainables.bin"),
                    map_location="cpu",
                )
            else:
                # this is probably from HF Hub
                from huggingface_hub import hf_hub_download

                def load_from_hf(repo_id, filename, subfolder=None):
                    cache_file = hf_hub_download(
                        repo_id=repo_id, filename=filename, subfolder=subfolder
                    )
                    return torch.load(cache_file, map_location="cpu")

                non_lora_trainables = load_from_hf(model_path, "non_lora_trainables.bin")
            non_lora_trainables = {
                (k[11:] if k.startswith("base_model.") else k): v
                for k, v in non_lora_trainables.items()
            }
            if any(k.startswith("model.model.") for k in non_lora_trainables):
                non_lora_trainables = {
                    (k[6:] if k.startswith("model.") else k): v
                    for k, v in non_lora_trainables.items()
                }
            model.load_state_dict(non_lora_trainables, strict=False)

            from peft import PeftModel

            print("Loading LoRA weights...")
            model = PeftModel.from_pretrained(model, model_path, device_map=device_map)
            print("Merging LoRA weights...")
            model = model.merge_and_unload()
            print("Model is loaded...")
        elif model_base is not None:
            # this may be mm projector only
            print("Loading LLaVA from base model...")
            if "mpt" in model_name.lower():
                if not os.path.isfile(os.path.join(model_path, "configuration_mpt.py")):
                    shutil.copyfile(
                        os.path.join(model_base, "configuration_mpt.py"),
                        os.path.join(model_path, "configuration_mpt.py"),
                    )
                tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
                cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
                model = LlavaMPTForCausalLM.from_pretrained(
                    model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs
                )
            else:
                tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
                cfg_pretrained = AutoConfig.from_pretrained(model_path)
                model = LlavaLlamaForCausalLM.from_pretrained(
                    model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs
                )

            # load mm projector weights (this include the vision tower weights too)
            if model.get_vision_tower() is not None:
                if not model.get_vision_tower().is_loaded:
                    model.get_vision_tower().load_model()

                mm_projector_weights = torch.load(
                    os.path.join(model_path, "mm_projector.bin"), map_location="cpu"
                )
                mm_projector_weights = {k: v for k, v in mm_projector_weights.items()}
                model.load_state_dict(
                    mm_projector_weights, strict=False
                )  # for 3d point cloud, this will load the vision tower too.
        else:
            if "mpt" in model_name.lower():
                tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
                model = LlavaMPTForCausalLM.from_pretrained(
                    model_path, low_cpu_mem_usage=True, **kwargs
                )
            else:
                tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
                model = LlavaLlamaForCausalLM.from_pretrained(
                    model_path, low_cpu_mem_usage=True, **kwargs
                )
    else:
        # Load language model
        if model_base is not None:
            # PEFT model
            from peft import PeftModel

            tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
            model = AutoModelForCausalLM.from_pretrained(
                model_base,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
                device_map=device_map,
            )
            print(f"Loading LoRA weights from {model_path}")
            model = PeftModel.from_pretrained(model, model_path, device_map=device_map)
            print(f"Merging weights")
            model = model.merge_and_unload()
            print("Convert to BF16...")
            model.to(torch.bfloat16)
        else:
            use_fast = False
            if "mpt" in model_name.lower():
                tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
                model = AutoModelForCausalLM.from_pretrained(
                    model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs
                )
            else:
                tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
                model = AutoModelForCausalLM.from_pretrained(
                    model_path, low_cpu_mem_usage=True, **kwargs
                )

    image_processor = None

    if "llava" in model_name.lower():
        mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
        mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
        if mm_use_im_patch_token:
            tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
        if mm_use_im_start_end:
            tokenizer.add_tokens(
                [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
            )
        model.resize_token_embeddings(len(tokenizer))

        vision_tower = model.get_vision_tower()
        if vision_tower is not None:
            if not vision_tower.is_loaded:
                vision_tower.load_model()
            vision_tower.to(device=model.device, dtype=model.dtype)
            image_processor = vision_tower.image_processor

    if hasattr(model.config, "max_sequence_length"):
        context_len = model.config.max_sequence_length
    else:
        context_len = 2048

    return tokenizer, model, image_processor, context_len