Spaces:
Running
on
Zero
Running
on
Zero
from transformers import AutoConfig | |
def auto_upgrade(config): | |
cfg = AutoConfig.from_pretrained(config) | |
if "llava" in config and "llava" not in cfg.model_type: | |
assert cfg.model_type == "llama" | |
print( | |
"You are using newer LLaVA code base, while the checkpoint of v0 is from older code base." | |
) | |
print( | |
"You must upgrade the checkpoint to the new code base (this can be done automatically)." | |
) | |
confirm = input("Please confirm that you want to upgrade the checkpoint. [Y/N]") | |
if confirm.lower() in ["y", "yes"]: | |
print("Upgrading checkpoint...") | |
assert len(cfg.architectures) == 1 | |
setattr(cfg.__class__, "model_type", "llava") | |
cfg.architectures[0] = "LlavaLlamaForCausalLM" | |
cfg.save_pretrained(config) | |
print("Checkpoint upgraded.") | |
else: | |
print("Checkpoint upgrade aborted.") | |
exit(1) | |
def get_w(weights, keyword): | |
return { | |
k.split(keyword + ".", maxsplit=1)[1]: v | |
for k, v in weights.items() | |
if keyword in k | |
} | |