import os from typing import List import uuid import chainlit as cl from chainlit.types import AskFileResponse from langchain.memory import ConversationBufferMemory from langchain_core.chat_history import BaseChatMessageHistory from langchain_community.chat_message_histories import ChatMessageHistory from langchain_community.document_loaders import PyMuPDFLoader, TextLoader from langchain.prompts import MessagesPlaceholder from langchain.prompts import ChatPromptTemplate from langchain.chains.history_aware_retriever import create_history_aware_retriever from langchain.chains.retrieval import create_retrieval_chain from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_experimental.text_splitter import SemanticChunker from langchain_qdrant import QdrantVectorStore from langchain_core.documents import Document from qdrant_client import QdrantClient from qdrant_client.http.models import Distance, VectorParams from langchain_openai import ChatOpenAI from langchain_core.runnables.history import RunnableWithMessageHistory # from chainlit.input_widget import Select, Switch, Slider from dotenv import load_dotenv from langchain_huggingface import HuggingFaceEmbeddings from langchain.retrievers.contextual_compression import ContextualCompressionRetriever from langchain.retrievers.document_compressors import LLMChainExtractor load_dotenv() BOR_FILE_PATH = "https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf" NIST_FILE_PATH = "https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf" SMALL_DOC = "https://arxiv.org/pdf/1908.10084" # 11 pages Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks documents_to_preload = [ BOR_FILE_PATH, NIST_FILE_PATH # SMALL_DOC ] collection_name = "ai-safety" welcome_message = """ Welcome to the chatbot to clarify all your AI Safety related queries.: Now preloading below documents: 1. Blueprint for an AI Bill of Rights 2. NIST AI Standards Please wait for a moment to load the documents. """ chat_model_name = "gpt-4o" embedding_model_name = "jeevanions/finetuned_arctic-embedd-l" # Fine tuned model used chat_model = ChatOpenAI(model=chat_model_name, temperature=0) async def connect_to_qdrant(): embedding_model = HuggingFaceEmbeddings(model_name=embedding_model_name) qdrant_url = os.environ["QDRANT_URL"] qdrant_api_key = os.environ["QDRANT_API_KEY"] collection_name = os.environ["COLLECTION_NAME"] qdrant_client = QdrantClient(url=qdrant_url,api_key=qdrant_api_key) vector_store = QdrantVectorStore( client=qdrant_client, collection_name=collection_name, embedding=embedding_model, ) return vector_store.as_retriever(search_type="similarity_score_threshold",search_kwargs={'k':10,'score_threshold': 0.8}) async def get_contextual_compressed_retriever(retriver): base_retriever = retriver compressor_llm = ChatOpenAI(temperature=0, model_name="gpt-4o", max_tokens=4000) compressor = LLMChainExtractor.from_llm(compressor_llm) #Combine the retriever with the compressor compression_retriever = ContextualCompressionRetriever( base_compressor=compressor, base_retriever=base_retriever ) return compression_retriever def initialize_vectorstore( collection_name: str, embedding_model, dimension, distance_metric: Distance = Distance.COSINE, ): client = QdrantClient(":memory:") client.create_collection( collection_name=collection_name, vectors_config=VectorParams(size=dimension, distance=distance_metric), ) vector_store = QdrantVectorStore( client=client, collection_name=collection_name, embedding=embedding_model, ) return vector_store def get_text_splitter(strategy, embedding_model): if strategy == "semantic": return SemanticChunker( embedding_model, breakpoint_threshold_type="percentile", breakpoint_threshold_amount=90, ) def process_file(file: AskFileResponse, text_splitter): if file.type == "text/plain": Loader = TextLoader elif file.type == "application/pdf": Loader = PyMuPDFLoader loader = Loader(file.path) documents = loader.load() title = documents[0].metadata.get("title") docs = text_splitter.split_documents(documents) for i, doc in enumerate(docs): doc.metadata["source"] = f"source_{i}" doc.metadata["title"] = title return docs def populate_vectorstore(vector_store, docs: List[Document]): vector_store.add_documents(docs) return vector_store def create_history_aware_retriever_self(chat_model, retriever): contextualize_q_system_prompt = ( "Given a chat history and the latest user question which might reference context in the chat history, " "formulate a standalone question which can be understood without the chat history. Do NOT answer the question, " "just reformulate it if needed and otherwise return it as is." ) contextualize_q_prompt = ChatPromptTemplate.from_messages( [ ("system", contextualize_q_system_prompt), MessagesPlaceholder("chat_history"), ("human", "{input}"), ] ) return create_history_aware_retriever(chat_model, retriever, contextualize_q_prompt) def create_qa_chain(chat_model): qa_system_prompt = ( "You are an helpful assistant named 'Shield' and your task is to answer any questions related to AI Safety for the given context." "Use the following pieces of retrieved context to answer the question." # "If any questions asked outside AI Safety context, just say that you are a specialist in AI Safety and can't answer that." # f"When introducing you, just say that you are an AI assistant powered by embedding model {embedding_model_name} and chat model {chat_model_name} and your knowledge is limited to 'Blueprint for an AI Bill of Rights' and 'NIST AI Standards' documents." "If you don't know the answer, just say that you don't know.\n\n" "{context}" ) qa_prompt = ChatPromptTemplate.from_messages( [ ("system", qa_system_prompt), MessagesPlaceholder("chat_history"), ("human", "{input}"), ] ) return create_stuff_documents_chain(chat_model, qa_prompt) def create_rag_chain(chat_model, retriever): history_aware_retriever = create_history_aware_retriever_self(chat_model, retriever) question_answer_chain = create_qa_chain(chat_model) return create_retrieval_chain(history_aware_retriever, question_answer_chain) def create_session_id(): session_id = str(uuid.uuid4()) return session_id @cl.on_chat_start async def start(): msg = cl.Message(content=welcome_message) await msg.send() # Create a session id session_id = create_session_id() cl.user_session.set("session_id", session_id) retriever = await connect_to_qdrant() contextual_compressed_retriever = await get_contextual_compressed_retriever(retriever) rag_chain = create_rag_chain(chat_model, contextual_compressed_retriever) store = {} def get_session_history(session_id: str) -> BaseChatMessageHistory: if session_id not in store: store[session_id] = ChatMessageHistory() return store[session_id] conversational_rag_chain = RunnableWithMessageHistory( rag_chain, get_session_history, input_messages_key="input", history_messages_key="chat_history", output_messages_key="answer", ) # Let the user know that the system is ready msg.content = msg.content + "\nReady to answer your questions!" await msg.update() cl.user_session.set("conversational_rag_chain", conversational_rag_chain) @cl.on_message async def main(message: cl.Message): session_id = cl.user_session.get("session_id") conversational_rag_chain = cl.user_session.get("conversational_rag_chain") response = await conversational_rag_chain.ainvoke( {"input": message.content}, config={"configurable": {"session_id": session_id}, "callbacks":[cl.AsyncLangchainCallbackHandler()]}, ) answer = response["answer"] source_documents = response["context"] text_elements = [] unique_pages = set() if source_documents: for source_idx, source_doc in enumerate(source_documents): source_name = f"source_{source_idx+1}" page_number = source_doc.metadata['page'] #page_number = source_doc.metadata.get('page', "NA") # NA or any default value page = f"Page {page_number}" text_element_content = source_doc.page_content text_element_content = text_element_content if text_element_content != "" else "No Content" #text_elements.append(cl.Text(content=text_element_content, name=source_name)) if page not in unique_pages: unique_pages.add(page) text_elements.append(cl.Text(content=text_element_content, name=page)) #text_elements.append(cl.Text(content=text_element_content, name=page)) source_names = [text_el.name for text_el in text_elements] if source_names: answer += f"\n\n Sources:{', '.join(source_names)}" else: answer += "\n\n No sources found" await cl.Message(content=answer, elements=text_elements).send() if __name__ == "__main__": from chainlit.cli import run_chainlit run_chainlit(__file__)