Spaces:
Runtime error
Runtime error
Commit
·
7029b6b
1
Parent(s):
2f62cb3
Add app.py and weights
Browse files- app.py +92 -0
- bert_classifier.h5 +3 -0
- countvect.pkl +3 -0
- logistic_model.pkl +3 -0
- lstm_model.h5 +3 -0
- tokenizer.pkl +3 -0
- tv_layer.pkl +3 -0
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import re
|
4 |
+
from tensorflow import keras
|
5 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
6 |
+
from tensorflow.keras.layers import TextVectorization
|
7 |
+
import pickle
|
8 |
+
import os
|
9 |
+
|
10 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
11 |
+
|
12 |
+
|
13 |
+
def custom_standardization(input_data):
|
14 |
+
lowercase = tf.strings.lower(input_data)
|
15 |
+
stripped_html = tf.strings.regex_replace(lowercase, "<br />", " ")
|
16 |
+
return tf.strings.regex_replace(
|
17 |
+
stripped_html, "[%s]" % re.escape("!#$%&'()*+,-./:;<=>?@\^_`{|}~"), ""
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
count_vect = pickle.load(open('countvect.pkl', 'rb'))
|
22 |
+
tokenizer = pickle.load(open('tokenizer.pkl', 'rb'))
|
23 |
+
|
24 |
+
from_disk = pickle.load(open('tv_layer.pkl', 'rb'))
|
25 |
+
text_vectorization = TextVectorization.from_config(from_disk['config'])
|
26 |
+
text_vectorization.set_weights(from_disk['weights'])
|
27 |
+
|
28 |
+
lr_model = pickle.load(open('logistic_model.pkl', 'rb'))
|
29 |
+
lstm_model = keras.models.load_model('lstm_model.h5')
|
30 |
+
bert_classifier_model = keras.models.load_model('bert_classifier.h5')
|
31 |
+
|
32 |
+
|
33 |
+
def get_bert_end_to_end(model):
|
34 |
+
inputs_string = keras.Input(shape=(1,), dtype="string")
|
35 |
+
indices = text_vectorization(inputs_string)
|
36 |
+
outputs = model(indices)
|
37 |
+
end_to_end_model = keras.Model(inputs_string, outputs, name="end_to_end_model")
|
38 |
+
optimizer = keras.optimizers.Adam(learning_rate=0.001)
|
39 |
+
end_to_end_model.compile(
|
40 |
+
optimizer=optimizer, loss="binary_crossentropy", metrics=["accuracy"]
|
41 |
+
)
|
42 |
+
return end_to_end_model
|
43 |
+
|
44 |
+
|
45 |
+
bert_end_model = get_bert_end_to_end(bert_classifier_model)
|
46 |
+
|
47 |
+
|
48 |
+
def get_lr_results(text):
|
49 |
+
sample_vec = count_vect.transform([text])
|
50 |
+
return lr_model.predict(sample_vec)[0]
|
51 |
+
|
52 |
+
|
53 |
+
def get_lstm_results(text):
|
54 |
+
tokenized_text = tokenizer.texts_to_sequences([text])
|
55 |
+
padded_tokens = pad_sequences(tokenized_text, maxlen=200)
|
56 |
+
return lstm_model.predict(padded_tokens)[0][0]
|
57 |
+
|
58 |
+
|
59 |
+
def get_bert_results(text):
|
60 |
+
return bert_end_model.predict([text])[0][0]
|
61 |
+
|
62 |
+
|
63 |
+
def decide(text):
|
64 |
+
lr_result = get_lr_results(text)
|
65 |
+
lstm_result = get_lstm_results(text)
|
66 |
+
bert_result = get_bert_results(text)
|
67 |
+
results = [
|
68 |
+
lr_result.round(2),
|
69 |
+
lstm_result.round(2),
|
70 |
+
bert_result.round(2)]
|
71 |
+
if lstm_result >= 0.6:
|
72 |
+
return "Positive review (LR: {}, LSTM: {}, BERT: {}".format(*results)
|
73 |
+
elif lstm_result <= 0.4:
|
74 |
+
return "Negative review (LR: {}, LSTM: {}, BERT: {}".format(*results)
|
75 |
+
else:
|
76 |
+
return "Neutral review (LR: {}, LSTM: {}, BERT: {}".format(*results)
|
77 |
+
|
78 |
+
|
79 |
+
example_sentence_1 = "I hate this toaster, they made no effort in making it. So cheap, it almost immediately broke!"
|
80 |
+
example_sentence_2 = "Great toaster! We love the way it toasted my bread so quickly. Very high quality components too."
|
81 |
+
examples = [[example_sentence_1], [example_sentence_2]]
|
82 |
+
|
83 |
+
description = "Write out a product review to know the underlying sentiment."
|
84 |
+
|
85 |
+
gr.Interface(decide,
|
86 |
+
inputs=gr.inputs.Textbox(lines=1, placeholder=None, default="", label=None),
|
87 |
+
outputs='text',
|
88 |
+
examples=examples,
|
89 |
+
title="Sentiment analysis of product reviews",
|
90 |
+
theme="grass", description=description,
|
91 |
+
allow_flagging="auto",
|
92 |
+
flagging_dir='flagging records').launch(enable_queue=True, inline=False, share=True)
|
bert_classifier.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40773586c34fe1c3197640db0267716bedb5f76e1ffebb6b7232806741452178
|
3 |
+
size 16501864
|
countvect.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:117ac083bd1587e1cba48feb9669bb7e5e0871846a497c414e51e9610de8d946
|
3 |
+
size 14439392
|
logistic_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93bf191cb6320e2081ee5cf4ee695a497b4165f398e3ef877401d5787f55576d
|
3 |
+
size 7016090
|
lstm_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee86ce5eac1a091e8997adf34c2b056769ae482f99cffa82c4274e5f4179b193
|
3 |
+
size 11066736
|
tokenizer.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4de6458d9a8021512a065ed2d64d182289fcb1333aa17e34f8c12a5c5f7cb222
|
3 |
+
size 49477377
|
tv_layer.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe6f5c5513bb7515866c9bf81c4a51438e9da90963414f7eb56f68a701e50ab4
|
3 |
+
size 298869
|