File size: 23,531 Bytes
8453b3d
df6fc6f
 
 
 
 
3be2b51
e5ef0df
8453b3d
2240740
 
8453b3d
df6fc6f
 
 
 
8453b3d
19ab4f1
3be2b51
 
 
 
 
 
 
 
 
 
 
 
 
 
df6fc6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19ab4f1
df6fc6f
 
 
393a9c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df6fc6f
19ab4f1
 
3be2b51
df6fc6f
 
f137136
df6fc6f
 
 
 
19ab4f1
df6fc6f
 
 
f137136
df6fc6f
 
 
393a9c3
df6fc6f
 
 
 
393a9c3
df6fc6f
 
 
 
 
393a9c3
df6fc6f
 
 
19ab4f1
 
3be2b51
df6fc6f
 
 
 
 
 
f137136
df6fc6f
 
 
 
 
 
 
 
 
 
 
 
 
19ab4f1
df6fc6f
 
 
 
 
 
 
 
393a9c3
df6fc6f
 
 
 
 
 
393a9c3
df6fc6f
 
 
 
393a9c3
 
 
df6fc6f
 
 
 
393a9c3
df6fc6f
 
 
 
 
393a9c3
df6fc6f
 
 
 
393a9c3
df6fc6f
 
 
19ab4f1
 
3be2b51
df6fc6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2bf507
df6fc6f
 
 
 
8453b3d
df6fc6f
 
 
 
db355d3
 
 
df6fc6f
296b5e1
df6fc6f
 
 
 
 
 
393a9c3
df6fc6f
 
 
 
393a9c3
df6fc6f
 
 
 
393a9c3
df6fc6f
 
 
296b5e1
df6fc6f
 
 
393a9c3
df6fc6f
 
 
 
 
393a9c3
df6fc6f
 
 
 
393a9c3
df6fc6f
 
 
 
db355d3
 
df6fc6f
 
 
 
393a9c3
df6fc6f
 
 
 
 
393a9c3
df6fc6f
 
 
 
393a9c3
df6fc6f
 
 
 
393a9c3
 
df6fc6f
 
 
 
 
 
 
393a9c3
df6fc6f
 
 
 
393a9c3
df6fc6f
 
 
 
 
 
 
393a9c3
 
df6fc6f
 
 
 
 
 
 
393a9c3
df6fc6f
393a9c3
df6fc6f
 
 
393a9c3
df6fc6f
 
 
 
393a9c3
df6fc6f
 
 
 
 
393a9c3
df6fc6f
 
 
 
393a9c3
df6fc6f
 
 
 
393a9c3
df6fc6f
 
 
 
393a9c3
df6fc6f
 
 
 
393a9c3
df6fc6f
 
 
 
393a9c3
df6fc6f
 
 
 
393a9c3
df6fc6f
 
 
 
393a9c3
df6fc6f
 
 
 
 
393a9c3
df6fc6f
 
 
 
 
393a9c3
 
df6fc6f
 
 
 
393a9c3
df6fc6f
 
 
 
393a9c3
 
df6fc6f
 
 
 
393a9c3
 
df6fc6f
 
 
 
8453b3d
df6fc6f
 
 
 
393a9c3
df6fc6f
 
 
 
 
 
e5ef0df
df6fc6f
 
 
 
 
 
 
 
 
e5ef0df
df6fc6f
 
 
 
e5ef0df
afc1f96
ffaa4d2
3be2b51
 
 
 
 
 
37be773
 
 
 
db355d3
3be2b51
 
 
 
 
37be773
 
3be2b51
 
 
 
 
 
37be773
3be2b51
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
import gradio as gr
import torch
from typing import Optional, Dict, List
from pydantic import BaseModel, Field, field_validator
from gradio_i18n import Translate, gettext as _
from enum import Enum
from copy import deepcopy
import yaml

from modules.utils.constants import AUTOMATIC_DETECTION


class WhisperImpl(Enum):
    WHISPER = "whisper"
    FASTER_WHISPER = "faster-whisper"
    INSANELY_FAST_WHISPER = "insanely_fast_whisper"


class BaseParams(BaseModel):
    def to_dict(self) -> Dict:
        return self.model_dump()

    def to_list(self) -> List:
        return list(self.model_dump().values())

    @classmethod
    def from_list(cls, data_list: List) -> 'BaseParams':
        field_names = list(cls.model_fields.keys())
        return cls(**dict(zip(field_names, data_list)))


class VadParams(BaseParams):
    """Voice Activity Detection parameters"""
    vad_filter: bool = Field(default=False, description="Enable voice activity detection to filter out non-speech parts")
    threshold: float = Field(
        default=0.5,
        ge=0.0,
        le=1.0,
        description="Speech threshold for Silero VAD. Probabilities above this value are considered speech"
    )
    min_speech_duration_ms: int = Field(
        default=250,
        ge=0,
        description="Final speech chunks shorter than this are discarded"
    )
    max_speech_duration_s: float = Field(
        default=float("inf"),
        gt=0,
        description="Maximum duration of speech chunks in seconds"
    )
    min_silence_duration_ms: int = Field(
        default=2000,
        ge=0,
        description="Minimum silence duration between speech chunks"
    )
    speech_pad_ms: int = Field(
        default=400,
        ge=0,
        description="Padding added to each side of speech chunks"
    )

    @classmethod
    def to_gradio_inputs(cls, defaults: Optional[Dict] = None) -> List[gr.components.base.FormComponent]:
        return [
            gr.Checkbox(
                label=_("Enable Silero VAD Filter"),
                value=defaults.get("vad_filter", cls.__fields__["vad_filter"].default),
                interactive=True,
                info=_("Enable this to transcribe only detected voice")
            ),
            gr.Slider(
                minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
                value=defaults.get("threshold", cls.__fields__["threshold"].default),
                info="Lower it to be more sensitive to small sounds."
            ),
            gr.Number(
                label="Minimum Speech Duration (ms)", precision=0,
                value=defaults.get("min_speech_duration_ms", cls.__fields__["min_speech_duration_ms"].default),
                info="Final speech chunks shorter than this time are thrown out"
            ),
            gr.Number(
                label="Maximum Speech Duration (s)",
                value=defaults.get("max_speech_duration_s", cls.__fields__["max_speech_duration_s"].default),
                info="Maximum duration of speech chunks in \"seconds\"."
            ),
            gr.Number(
                label="Minimum Silence Duration (ms)", precision=0,
                value=defaults.get("min_silence_duration_ms", cls.__fields__["min_silence_duration_ms"].default),
                info="In the end of each speech chunk wait for this time before separating it"
            ),
            gr.Number(
                label="Speech Padding (ms)", precision=0,
                value=defaults.get("speech_pad_ms", cls.__fields__["speech_pad_ms"].default),
                info="Final speech chunks are padded by this time each side"
            )
        ]


class DiarizationParams(BaseParams):
    """Speaker diarization parameters"""
    is_diarize: bool = Field(default=False, description="Enable speaker diarization")
    device: str = Field(default="cuda", description="Device to run Diarization model.")
    hf_token: str = Field(
        default="",
        description="Hugging Face token for downloading diarization models"
    )

    @classmethod
    def to_gradio_inputs(cls,
                         defaults: Optional[Dict] = None,
                         available_devices: Optional[List] = None) -> List[gr.components.base.FormComponent]:
        return [
            gr.Checkbox(
                label=_("Enable Diarization"),
                value=defaults.get("is_diarize", cls.__fields__["is_diarize"].default),
                info=_("Enable speaker diarization")
            ),
            gr.Textbox(
                label=_("HuggingFace Token"),
                value=defaults.get("hf_token", cls.__fields__["hf_token"].default),
                info=_("This is only needed the first time you download the model")
            ),
            gr.Dropdown(
                label=_("Device"),
                choices=["cpu", "cuda"] if available_devices is None else available_devices,
                value=defaults.get("device", cls.__fields__["device"].default),
                info=_("Device to run diarization model")
            )
        ]


class BGMSeparationParams(BaseParams):
    """Background music separation parameters"""
    is_separate_bgm: bool = Field(default=False, description="Enable background music separation")
    model_size: str = Field(
        default="UVR-MDX-NET-Inst_HQ_4",
        description="UVR model size"
    )
    device: str = Field(default="cuda", description="Device to run UVR model.")
    segment_size: int = Field(
        default=256,
        gt=0,
        description="Segment size for UVR model"
    )
    save_file: bool = Field(
        default=False,
        description="Whether to save separated audio files"
    )
    enable_offload: bool = Field(
        default=True,
        description="Offload UVR model after transcription"
    )

    @classmethod
    def to_gradio_input(cls,
                        defaults: Optional[Dict] = None,
                        available_devices: Optional[List] = None,
                        available_models: Optional[List] = None) -> List[gr.components.base.FormComponent]:
        return [
            gr.Checkbox(
                label=_("Enable Background Music Remover Filter"),
                value=defaults.get("is_separate_bgm", cls.__fields__["is_separate_bgm"].default),
                interactive=True,
                info=_("Enabling this will remove background music")
            ),
            gr.Dropdown(
                label=_("Device"),
                choices=["cpu", "cuda"] if available_devices is None else available_devices,
                value=defaults.get("device", cls.__fields__["device"].default),
                info=_("Device to run UVR model")
            ),
            gr.Dropdown(
                label=_("Model"),
                choices=["UVR-MDX-NET-Inst_HQ_4",
                         "UVR-MDX-NET-Inst_3"] if available_models is None else available_models,
                value=defaults.get("model_size", cls.__fields__["model_size"].default),
                info=_("UVR model size")
            ),
            gr.Number(
                label="Segment Size",
                value=defaults.get("segment_size", cls.__fields__["segment_size"].default),
                precision=0,
                info="Segment size for UVR model"
            ),
            gr.Checkbox(
                label=_("Save separated files to output"),
                value=defaults.get("save_file", cls.__fields__["save_file"].default),
                info=_("Whether to save separated audio files")
            ),
            gr.Checkbox(
                label=_("Offload sub model after removing background music"),
                value=defaults.get("enable_offload", cls.__fields__["enable_offload"].default),
                info=_("Offload UVR model after transcription")
            )
        ]


class WhisperParams(BaseParams):
    """Whisper parameters"""
    model_size: str = Field(default="large-v2", description="Whisper model size")
    lang: Optional[str] = Field(default=None, description="Source language of the file to transcribe")
    is_translate: bool = Field(default=False, description="Translate speech to English end-to-end")
    beam_size: int = Field(default=5, ge=1, description="Beam size for decoding")
    log_prob_threshold: float = Field(
        default=-1.0,
        description="Threshold for average log probability of sampled tokens"
    )
    no_speech_threshold: float = Field(
        default=0.6,
        ge=0.0,
        le=1.0,
        description="Threshold for detecting silence"
    )
    compute_type: str = Field(default="float16", description="Computation type for transcription")
    best_of: int = Field(default=5, ge=1, description="Number of candidates when sampling")
    patience: float = Field(default=1.0, gt=0, description="Beam search patience factor")
    condition_on_previous_text: bool = Field(
        default=True,
        description="Use previous output as prompt for next window"
    )
    prompt_reset_on_temperature: float = Field(
        default=0.5,
        ge=0.0,
        le=1.0,
        description="Temperature threshold for resetting prompt"
    )
    initial_prompt: Optional[str] = Field(default=None, description="Initial prompt for first window")
    temperature: float = Field(
        default=0.0,
        ge=0.0,
        description="Temperature for sampling"
    )
    compression_ratio_threshold: float = Field(
        default=2.4,
        gt=0,
        description="Threshold for gzip compression ratio"
    )
    batch_size: int = Field(default=24, gt=0, description="Batch size for processing")
    length_penalty: float = Field(default=1.0, gt=0, description="Exponential length penalty")
    repetition_penalty: float = Field(default=1.0, gt=0, description="Penalty for repeated tokens")
    no_repeat_ngram_size: int = Field(default=0, ge=0, description="Size of n-grams to prevent repetition")
    prefix: Optional[str] = Field(default=None, description="Prefix text for first window")
    suppress_blank: bool = Field(
        default=True,
        description="Suppress blank outputs at start of sampling"
    )
    suppress_tokens: Optional[str] = Field(default="[-1]", description="Token IDs to suppress")
    max_initial_timestamp: float = Field(
        default=0.0,
        ge=0.0,
        description="Maximum initial timestamp"
    )
    word_timestamps: bool = Field(default=False, description="Extract word-level timestamps")
    prepend_punctuations: Optional[str] = Field(
        default="\"'“¿([{-",
        description="Punctuations to merge with next word"
    )
    append_punctuations: Optional[str] = Field(
        default="\"'.。,,!!??::”)]}、",
        description="Punctuations to merge with previous word"
    )
    max_new_tokens: Optional[int] = Field(default=None, description="Maximum number of new tokens per chunk")
    chunk_length: Optional[int] = Field(default=30, description="Length of audio segments in seconds")
    hallucination_silence_threshold: Optional[float] = Field(
        default=None,
        description="Threshold for skipping silent periods in hallucination detection"
    )
    hotwords: Optional[str] = Field(default=None, description="Hotwords/hint phrases for the model")
    language_detection_threshold: Optional[float] = Field(
        default=None,
        description="Threshold for language detection probability"
    )
    language_detection_segments: int = Field(
        default=1,
        gt=0,
        description="Number of segments for language detection"
    )

    @field_validator('lang')
    def validate_lang(cls, v):
        from modules.utils.constants import AUTOMATIC_DETECTION
        return None if v == AUTOMATIC_DETECTION.unwrap() else v

    @classmethod
    def to_gradio_inputs(cls,
                         defaults: Optional[Dict] = None,
                         only_advanced: Optional[bool] = True,
                         whisper_type: Optional[WhisperImpl] = None,
                         available_compute_types: Optional[List] = None,
                         compute_type: Optional[str] = None):
        whisper_type = WhisperImpl.FASTER_WHISPER if whisper_type is None else whisper_type

        inputs = []
        if not only_advanced:
            inputs += [
                gr.Dropdown(
                    label="Model Size",
                    choices=["small", "medium", "large-v2"],
                    value=defaults.get("model_size", cls.__fields__["model_size"].default),
                    info="Whisper model size"
                ),
                gr.Textbox(
                    label="Language",
                    value=defaults.get("lang", cls.__fields__["lang"].default),
                    info="Source language of the file to transcribe"
                ),
                gr.Checkbox(
                    label="Translate to English",
                    value=defaults.get("is_translate", cls.__fields__["is_translate"].default),
                    info="Translate speech to English end-to-end"
                ),
            ]

        inputs += [
            gr.Number(
                label="Beam Size",
                value=defaults.get("beam_size", cls.__fields__["beam_size"].default),
                precision=0,
                info="Beam size for decoding"
            ),
            gr.Number(
                label="Log Probability Threshold",
                value=defaults.get("log_prob_threshold", cls.__fields__["log_prob_threshold"].default),
                info="Threshold for average log probability of sampled tokens"
            ),
            gr.Number(
                label="No Speech Threshold",
                value=defaults.get("no_speech_threshold", cls.__fields__["no_speech_threshold"].default),
                info="Threshold for detecting silence"
            ),
            gr.Dropdown(
                label="Compute Type",
                choices=["float16", "int8", "int16"] if available_compute_types is None else available_compute_types,
                value=defaults.get("compute_type", compute_type),
                info="Computation type for transcription"
            ),
            gr.Number(
                label="Best Of",
                value=defaults.get("best_of", cls.__fields__["best_of"].default),
                precision=0,
                info="Number of candidates when sampling"
            ),
            gr.Number(
                label="Patience",
                value=defaults.get("patience", cls.__fields__["patience"].default),
                info="Beam search patience factor"
            ),
            gr.Checkbox(
                label="Condition On Previous Text",
                value=defaults.get("condition_on_previous_text", cls.__fields__["condition_on_previous_text"].default),
                info="Use previous output as prompt for next window"
            ),
            gr.Slider(
                label="Prompt Reset On Temperature",
                value=defaults.get("prompt_reset_on_temperature",
                                   cls.__fields__["prompt_reset_on_temperature"].default),
                minimum=0,
                maximum=1,
                step=0.01,
                info="Temperature threshold for resetting prompt"
            ),
            gr.Textbox(
                label="Initial Prompt",
                value=defaults.get("initial_prompt", cls.__fields__["initial_prompt"].default),
                info="Initial prompt for first window"
            ),
            gr.Slider(
                label="Temperature",
                value=defaults.get("temperature", cls.__fields__["temperature"].default),
                minimum=0.0,
                step=0.01,
                maximum=1.0,
                info="Temperature for sampling"
            ),
            gr.Number(
                label="Compression Ratio Threshold",
                value=defaults.get("compression_ratio_threshold",
                                   cls.__fields__["compression_ratio_threshold"].default),
                info="Threshold for gzip compression ratio"
            )
        ]
        if whisper_type == WhisperImpl.FASTER_WHISPER:
            inputs += [
                gr.Number(
                    label="Length Penalty",
                    value=defaults.get("length_penalty", cls.__fields__["length_penalty"].default),
                    info="Exponential length penalty",
                    visible=whisper_type == "faster_whisper"
                ),
                gr.Number(
                    label="Repetition Penalty",
                    value=defaults.get("repetition_penalty", cls.__fields__["repetition_penalty"].default),
                    info="Penalty for repeated tokens"
                ),
                gr.Number(
                    label="No Repeat N-gram Size",
                    value=defaults.get("no_repeat_ngram_size", cls.__fields__["no_repeat_ngram_size"].default),
                    precision=0,
                    info="Size of n-grams to prevent repetition"
                ),
                gr.Textbox(
                    label="Prefix",
                    value=defaults.get("prefix", cls.__fields__["prefix"].default),
                    info="Prefix text for first window"
                ),
                gr.Checkbox(
                    label="Suppress Blank",
                    value=defaults.get("suppress_blank", cls.__fields__["suppress_blank"].default),
                    info="Suppress blank outputs at start of sampling"
                ),
                gr.Textbox(
                    label="Suppress Tokens",
                    value=defaults.get("suppress_tokens", cls.__fields__["suppress_tokens"].default),
                    info="Token IDs to suppress"
                ),
                gr.Number(
                    label="Max Initial Timestamp",
                    value=defaults.get("max_initial_timestamp", cls.__fields__["max_initial_timestamp"].default),
                    info="Maximum initial timestamp"
                ),
                gr.Checkbox(
                    label="Word Timestamps",
                    value=defaults.get("word_timestamps", cls.__fields__["word_timestamps"].default),
                    info="Extract word-level timestamps"
                ),
                gr.Textbox(
                    label="Prepend Punctuations",
                    value=defaults.get("prepend_punctuations", cls.__fields__["prepend_punctuations"].default),
                    info="Punctuations to merge with next word"
                ),
                gr.Textbox(
                    label="Append Punctuations",
                    value=defaults.get("append_punctuations", cls.__fields__["append_punctuations"].default),
                    info="Punctuations to merge with previous word"
                ),
                gr.Number(
                    label="Max New Tokens",
                    value=defaults.get("max_new_tokens", cls.__fields__["max_new_tokens"].default),
                    precision=0,
                    info="Maximum number of new tokens per chunk"
                ),
                gr.Number(
                    label="Chunk Length (s)",
                    value=defaults.get("chunk_length", cls.__fields__["chunk_length"].default),
                    precision=0,
                    info="Length of audio segments in seconds"
                ),
                gr.Number(
                    label="Hallucination Silence Threshold (sec)",
                    value=defaults.get("hallucination_silence_threshold",
                                       cls.__fields__["hallucination_silence_threshold"].default),
                    info="Threshold for skipping silent periods in hallucination detection"
                ),
                gr.Textbox(
                    label="Hotwords",
                    value=defaults.get("hotwords", cls.__fields__["hotwords"].default),
                    info="Hotwords/hint phrases for the model"
                ),
                gr.Number(
                    label="Language Detection Threshold",
                    value=defaults.get("language_detection_threshold",
                                       cls.__fields__["language_detection_threshold"].default),
                    info="Threshold for language detection probability"
                ),
                gr.Number(
                    label="Language Detection Segments",
                    value=defaults.get("language_detection_segments",
                                       cls.__fields__["language_detection_segments"].default),
                    precision=0,
                    info="Number of segments for language detection"
                )
            ]

        if whisper_type == WhisperImpl.INSANELY_FAST_WHISPER:
            inputs += [
                gr.Number(
                    label="Batch Size",
                    value=defaults.get("batch_size", cls.__fields__["batch_size"].default),
                    precision=0,
                    info="Batch size for processing",
                    visible=whisper_type == "insanely_fast_whisper"
                )
            ]
        return inputs


class TranscriptionPipelineParams(BaseModel):
    """Transcription pipeline parameters"""
    whisper: WhisperParams = Field(default_factory=WhisperParams)
    vad: VadParams = Field(default_factory=VadParams)
    diarization: DiarizationParams = Field(default_factory=DiarizationParams)
    bgm_separation: BGMSeparationParams = Field(default_factory=BGMSeparationParams)

    def to_dict(self) -> Dict:
        data = {
            "whisper": self.whisper.to_dict(),
            "vad": self.vad.to_dict(),
            "diarization": self.diarization.to_dict(),
            "bgm_separation": self.bgm_separation.to_dict()
        }
        return data

    def to_list(self) -> List:
        """
        Convert data class to the list because I have to pass the parameters as a list in the gradio.
        Related Gradio issue: https://github.com/gradio-app/gradio/issues/2471
        See more about Gradio pre-processing: https://www.gradio.app/docs/components
        """
        whisper_list = self.whisper.to_list()
        vad_list = self.vad.to_list()
        diarization_list = self.diarization.to_list()
        bgm_sep_list = self.bgm_separation.to_list()
        return whisper_list + vad_list + diarization_list + bgm_sep_list

    @staticmethod
    def from_list(pipeline_list: List) -> 'TranscriptionPipelineParams':
        """Convert list to the data class again to use it in a function."""
        data_list = deepcopy(pipeline_list)

        whisper_list = data_list[0:len(WhisperParams.__annotations__)]
        data_list = data_list[len(WhisperParams.__annotations__):]

        vad_list = data_list[0:len(VadParams.__annotations__)]
        data_list = data_list[len(VadParams.__annotations__):]

        diarization_list = data_list[0:len(DiarizationParams.__annotations__)]
        data_list = data_list[len(DiarizationParams.__annotations__):]

        bgm_sep_list = data_list[0:len(BGMSeparationParams.__annotations__)]

        return TranscriptionPipelineParams(
            whisper=WhisperParams.from_list(whisper_list),
            vad=VadParams.from_list(vad_list),
            diarization=DiarizationParams.from_list(diarization_list),
            bgm_separation=BGMSeparationParams.from_list(bgm_sep_list)
        )