Spaces:
Running
Running
File size: 23,531 Bytes
8453b3d df6fc6f 3be2b51 e5ef0df 8453b3d 2240740 8453b3d df6fc6f 8453b3d 19ab4f1 3be2b51 df6fc6f 19ab4f1 df6fc6f 393a9c3 df6fc6f 19ab4f1 3be2b51 df6fc6f f137136 df6fc6f 19ab4f1 df6fc6f f137136 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 19ab4f1 3be2b51 df6fc6f f137136 df6fc6f 19ab4f1 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 19ab4f1 3be2b51 df6fc6f a2bf507 df6fc6f 8453b3d df6fc6f db355d3 df6fc6f 296b5e1 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 296b5e1 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f db355d3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 393a9c3 df6fc6f 8453b3d df6fc6f 393a9c3 df6fc6f e5ef0df df6fc6f e5ef0df df6fc6f e5ef0df afc1f96 ffaa4d2 3be2b51 37be773 db355d3 3be2b51 37be773 3be2b51 37be773 3be2b51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
import gradio as gr
import torch
from typing import Optional, Dict, List
from pydantic import BaseModel, Field, field_validator
from gradio_i18n import Translate, gettext as _
from enum import Enum
from copy import deepcopy
import yaml
from modules.utils.constants import AUTOMATIC_DETECTION
class WhisperImpl(Enum):
WHISPER = "whisper"
FASTER_WHISPER = "faster-whisper"
INSANELY_FAST_WHISPER = "insanely_fast_whisper"
class BaseParams(BaseModel):
def to_dict(self) -> Dict:
return self.model_dump()
def to_list(self) -> List:
return list(self.model_dump().values())
@classmethod
def from_list(cls, data_list: List) -> 'BaseParams':
field_names = list(cls.model_fields.keys())
return cls(**dict(zip(field_names, data_list)))
class VadParams(BaseParams):
"""Voice Activity Detection parameters"""
vad_filter: bool = Field(default=False, description="Enable voice activity detection to filter out non-speech parts")
threshold: float = Field(
default=0.5,
ge=0.0,
le=1.0,
description="Speech threshold for Silero VAD. Probabilities above this value are considered speech"
)
min_speech_duration_ms: int = Field(
default=250,
ge=0,
description="Final speech chunks shorter than this are discarded"
)
max_speech_duration_s: float = Field(
default=float("inf"),
gt=0,
description="Maximum duration of speech chunks in seconds"
)
min_silence_duration_ms: int = Field(
default=2000,
ge=0,
description="Minimum silence duration between speech chunks"
)
speech_pad_ms: int = Field(
default=400,
ge=0,
description="Padding added to each side of speech chunks"
)
@classmethod
def to_gradio_inputs(cls, defaults: Optional[Dict] = None) -> List[gr.components.base.FormComponent]:
return [
gr.Checkbox(
label=_("Enable Silero VAD Filter"),
value=defaults.get("vad_filter", cls.__fields__["vad_filter"].default),
interactive=True,
info=_("Enable this to transcribe only detected voice")
),
gr.Slider(
minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
value=defaults.get("threshold", cls.__fields__["threshold"].default),
info="Lower it to be more sensitive to small sounds."
),
gr.Number(
label="Minimum Speech Duration (ms)", precision=0,
value=defaults.get("min_speech_duration_ms", cls.__fields__["min_speech_duration_ms"].default),
info="Final speech chunks shorter than this time are thrown out"
),
gr.Number(
label="Maximum Speech Duration (s)",
value=defaults.get("max_speech_duration_s", cls.__fields__["max_speech_duration_s"].default),
info="Maximum duration of speech chunks in \"seconds\"."
),
gr.Number(
label="Minimum Silence Duration (ms)", precision=0,
value=defaults.get("min_silence_duration_ms", cls.__fields__["min_silence_duration_ms"].default),
info="In the end of each speech chunk wait for this time before separating it"
),
gr.Number(
label="Speech Padding (ms)", precision=0,
value=defaults.get("speech_pad_ms", cls.__fields__["speech_pad_ms"].default),
info="Final speech chunks are padded by this time each side"
)
]
class DiarizationParams(BaseParams):
"""Speaker diarization parameters"""
is_diarize: bool = Field(default=False, description="Enable speaker diarization")
device: str = Field(default="cuda", description="Device to run Diarization model.")
hf_token: str = Field(
default="",
description="Hugging Face token for downloading diarization models"
)
@classmethod
def to_gradio_inputs(cls,
defaults: Optional[Dict] = None,
available_devices: Optional[List] = None) -> List[gr.components.base.FormComponent]:
return [
gr.Checkbox(
label=_("Enable Diarization"),
value=defaults.get("is_diarize", cls.__fields__["is_diarize"].default),
info=_("Enable speaker diarization")
),
gr.Textbox(
label=_("HuggingFace Token"),
value=defaults.get("hf_token", cls.__fields__["hf_token"].default),
info=_("This is only needed the first time you download the model")
),
gr.Dropdown(
label=_("Device"),
choices=["cpu", "cuda"] if available_devices is None else available_devices,
value=defaults.get("device", cls.__fields__["device"].default),
info=_("Device to run diarization model")
)
]
class BGMSeparationParams(BaseParams):
"""Background music separation parameters"""
is_separate_bgm: bool = Field(default=False, description="Enable background music separation")
model_size: str = Field(
default="UVR-MDX-NET-Inst_HQ_4",
description="UVR model size"
)
device: str = Field(default="cuda", description="Device to run UVR model.")
segment_size: int = Field(
default=256,
gt=0,
description="Segment size for UVR model"
)
save_file: bool = Field(
default=False,
description="Whether to save separated audio files"
)
enable_offload: bool = Field(
default=True,
description="Offload UVR model after transcription"
)
@classmethod
def to_gradio_input(cls,
defaults: Optional[Dict] = None,
available_devices: Optional[List] = None,
available_models: Optional[List] = None) -> List[gr.components.base.FormComponent]:
return [
gr.Checkbox(
label=_("Enable Background Music Remover Filter"),
value=defaults.get("is_separate_bgm", cls.__fields__["is_separate_bgm"].default),
interactive=True,
info=_("Enabling this will remove background music")
),
gr.Dropdown(
label=_("Device"),
choices=["cpu", "cuda"] if available_devices is None else available_devices,
value=defaults.get("device", cls.__fields__["device"].default),
info=_("Device to run UVR model")
),
gr.Dropdown(
label=_("Model"),
choices=["UVR-MDX-NET-Inst_HQ_4",
"UVR-MDX-NET-Inst_3"] if available_models is None else available_models,
value=defaults.get("model_size", cls.__fields__["model_size"].default),
info=_("UVR model size")
),
gr.Number(
label="Segment Size",
value=defaults.get("segment_size", cls.__fields__["segment_size"].default),
precision=0,
info="Segment size for UVR model"
),
gr.Checkbox(
label=_("Save separated files to output"),
value=defaults.get("save_file", cls.__fields__["save_file"].default),
info=_("Whether to save separated audio files")
),
gr.Checkbox(
label=_("Offload sub model after removing background music"),
value=defaults.get("enable_offload", cls.__fields__["enable_offload"].default),
info=_("Offload UVR model after transcription")
)
]
class WhisperParams(BaseParams):
"""Whisper parameters"""
model_size: str = Field(default="large-v2", description="Whisper model size")
lang: Optional[str] = Field(default=None, description="Source language of the file to transcribe")
is_translate: bool = Field(default=False, description="Translate speech to English end-to-end")
beam_size: int = Field(default=5, ge=1, description="Beam size for decoding")
log_prob_threshold: float = Field(
default=-1.0,
description="Threshold for average log probability of sampled tokens"
)
no_speech_threshold: float = Field(
default=0.6,
ge=0.0,
le=1.0,
description="Threshold for detecting silence"
)
compute_type: str = Field(default="float16", description="Computation type for transcription")
best_of: int = Field(default=5, ge=1, description="Number of candidates when sampling")
patience: float = Field(default=1.0, gt=0, description="Beam search patience factor")
condition_on_previous_text: bool = Field(
default=True,
description="Use previous output as prompt for next window"
)
prompt_reset_on_temperature: float = Field(
default=0.5,
ge=0.0,
le=1.0,
description="Temperature threshold for resetting prompt"
)
initial_prompt: Optional[str] = Field(default=None, description="Initial prompt for first window")
temperature: float = Field(
default=0.0,
ge=0.0,
description="Temperature for sampling"
)
compression_ratio_threshold: float = Field(
default=2.4,
gt=0,
description="Threshold for gzip compression ratio"
)
batch_size: int = Field(default=24, gt=0, description="Batch size for processing")
length_penalty: float = Field(default=1.0, gt=0, description="Exponential length penalty")
repetition_penalty: float = Field(default=1.0, gt=0, description="Penalty for repeated tokens")
no_repeat_ngram_size: int = Field(default=0, ge=0, description="Size of n-grams to prevent repetition")
prefix: Optional[str] = Field(default=None, description="Prefix text for first window")
suppress_blank: bool = Field(
default=True,
description="Suppress blank outputs at start of sampling"
)
suppress_tokens: Optional[str] = Field(default="[-1]", description="Token IDs to suppress")
max_initial_timestamp: float = Field(
default=0.0,
ge=0.0,
description="Maximum initial timestamp"
)
word_timestamps: bool = Field(default=False, description="Extract word-level timestamps")
prepend_punctuations: Optional[str] = Field(
default="\"'“¿([{-",
description="Punctuations to merge with next word"
)
append_punctuations: Optional[str] = Field(
default="\"'.。,,!!??::”)]}、",
description="Punctuations to merge with previous word"
)
max_new_tokens: Optional[int] = Field(default=None, description="Maximum number of new tokens per chunk")
chunk_length: Optional[int] = Field(default=30, description="Length of audio segments in seconds")
hallucination_silence_threshold: Optional[float] = Field(
default=None,
description="Threshold for skipping silent periods in hallucination detection"
)
hotwords: Optional[str] = Field(default=None, description="Hotwords/hint phrases for the model")
language_detection_threshold: Optional[float] = Field(
default=None,
description="Threshold for language detection probability"
)
language_detection_segments: int = Field(
default=1,
gt=0,
description="Number of segments for language detection"
)
@field_validator('lang')
def validate_lang(cls, v):
from modules.utils.constants import AUTOMATIC_DETECTION
return None if v == AUTOMATIC_DETECTION.unwrap() else v
@classmethod
def to_gradio_inputs(cls,
defaults: Optional[Dict] = None,
only_advanced: Optional[bool] = True,
whisper_type: Optional[WhisperImpl] = None,
available_compute_types: Optional[List] = None,
compute_type: Optional[str] = None):
whisper_type = WhisperImpl.FASTER_WHISPER if whisper_type is None else whisper_type
inputs = []
if not only_advanced:
inputs += [
gr.Dropdown(
label="Model Size",
choices=["small", "medium", "large-v2"],
value=defaults.get("model_size", cls.__fields__["model_size"].default),
info="Whisper model size"
),
gr.Textbox(
label="Language",
value=defaults.get("lang", cls.__fields__["lang"].default),
info="Source language of the file to transcribe"
),
gr.Checkbox(
label="Translate to English",
value=defaults.get("is_translate", cls.__fields__["is_translate"].default),
info="Translate speech to English end-to-end"
),
]
inputs += [
gr.Number(
label="Beam Size",
value=defaults.get("beam_size", cls.__fields__["beam_size"].default),
precision=0,
info="Beam size for decoding"
),
gr.Number(
label="Log Probability Threshold",
value=defaults.get("log_prob_threshold", cls.__fields__["log_prob_threshold"].default),
info="Threshold for average log probability of sampled tokens"
),
gr.Number(
label="No Speech Threshold",
value=defaults.get("no_speech_threshold", cls.__fields__["no_speech_threshold"].default),
info="Threshold for detecting silence"
),
gr.Dropdown(
label="Compute Type",
choices=["float16", "int8", "int16"] if available_compute_types is None else available_compute_types,
value=defaults.get("compute_type", compute_type),
info="Computation type for transcription"
),
gr.Number(
label="Best Of",
value=defaults.get("best_of", cls.__fields__["best_of"].default),
precision=0,
info="Number of candidates when sampling"
),
gr.Number(
label="Patience",
value=defaults.get("patience", cls.__fields__["patience"].default),
info="Beam search patience factor"
),
gr.Checkbox(
label="Condition On Previous Text",
value=defaults.get("condition_on_previous_text", cls.__fields__["condition_on_previous_text"].default),
info="Use previous output as prompt for next window"
),
gr.Slider(
label="Prompt Reset On Temperature",
value=defaults.get("prompt_reset_on_temperature",
cls.__fields__["prompt_reset_on_temperature"].default),
minimum=0,
maximum=1,
step=0.01,
info="Temperature threshold for resetting prompt"
),
gr.Textbox(
label="Initial Prompt",
value=defaults.get("initial_prompt", cls.__fields__["initial_prompt"].default),
info="Initial prompt for first window"
),
gr.Slider(
label="Temperature",
value=defaults.get("temperature", cls.__fields__["temperature"].default),
minimum=0.0,
step=0.01,
maximum=1.0,
info="Temperature for sampling"
),
gr.Number(
label="Compression Ratio Threshold",
value=defaults.get("compression_ratio_threshold",
cls.__fields__["compression_ratio_threshold"].default),
info="Threshold for gzip compression ratio"
)
]
if whisper_type == WhisperImpl.FASTER_WHISPER:
inputs += [
gr.Number(
label="Length Penalty",
value=defaults.get("length_penalty", cls.__fields__["length_penalty"].default),
info="Exponential length penalty",
visible=whisper_type == "faster_whisper"
),
gr.Number(
label="Repetition Penalty",
value=defaults.get("repetition_penalty", cls.__fields__["repetition_penalty"].default),
info="Penalty for repeated tokens"
),
gr.Number(
label="No Repeat N-gram Size",
value=defaults.get("no_repeat_ngram_size", cls.__fields__["no_repeat_ngram_size"].default),
precision=0,
info="Size of n-grams to prevent repetition"
),
gr.Textbox(
label="Prefix",
value=defaults.get("prefix", cls.__fields__["prefix"].default),
info="Prefix text for first window"
),
gr.Checkbox(
label="Suppress Blank",
value=defaults.get("suppress_blank", cls.__fields__["suppress_blank"].default),
info="Suppress blank outputs at start of sampling"
),
gr.Textbox(
label="Suppress Tokens",
value=defaults.get("suppress_tokens", cls.__fields__["suppress_tokens"].default),
info="Token IDs to suppress"
),
gr.Number(
label="Max Initial Timestamp",
value=defaults.get("max_initial_timestamp", cls.__fields__["max_initial_timestamp"].default),
info="Maximum initial timestamp"
),
gr.Checkbox(
label="Word Timestamps",
value=defaults.get("word_timestamps", cls.__fields__["word_timestamps"].default),
info="Extract word-level timestamps"
),
gr.Textbox(
label="Prepend Punctuations",
value=defaults.get("prepend_punctuations", cls.__fields__["prepend_punctuations"].default),
info="Punctuations to merge with next word"
),
gr.Textbox(
label="Append Punctuations",
value=defaults.get("append_punctuations", cls.__fields__["append_punctuations"].default),
info="Punctuations to merge with previous word"
),
gr.Number(
label="Max New Tokens",
value=defaults.get("max_new_tokens", cls.__fields__["max_new_tokens"].default),
precision=0,
info="Maximum number of new tokens per chunk"
),
gr.Number(
label="Chunk Length (s)",
value=defaults.get("chunk_length", cls.__fields__["chunk_length"].default),
precision=0,
info="Length of audio segments in seconds"
),
gr.Number(
label="Hallucination Silence Threshold (sec)",
value=defaults.get("hallucination_silence_threshold",
cls.__fields__["hallucination_silence_threshold"].default),
info="Threshold for skipping silent periods in hallucination detection"
),
gr.Textbox(
label="Hotwords",
value=defaults.get("hotwords", cls.__fields__["hotwords"].default),
info="Hotwords/hint phrases for the model"
),
gr.Number(
label="Language Detection Threshold",
value=defaults.get("language_detection_threshold",
cls.__fields__["language_detection_threshold"].default),
info="Threshold for language detection probability"
),
gr.Number(
label="Language Detection Segments",
value=defaults.get("language_detection_segments",
cls.__fields__["language_detection_segments"].default),
precision=0,
info="Number of segments for language detection"
)
]
if whisper_type == WhisperImpl.INSANELY_FAST_WHISPER:
inputs += [
gr.Number(
label="Batch Size",
value=defaults.get("batch_size", cls.__fields__["batch_size"].default),
precision=0,
info="Batch size for processing",
visible=whisper_type == "insanely_fast_whisper"
)
]
return inputs
class TranscriptionPipelineParams(BaseModel):
"""Transcription pipeline parameters"""
whisper: WhisperParams = Field(default_factory=WhisperParams)
vad: VadParams = Field(default_factory=VadParams)
diarization: DiarizationParams = Field(default_factory=DiarizationParams)
bgm_separation: BGMSeparationParams = Field(default_factory=BGMSeparationParams)
def to_dict(self) -> Dict:
data = {
"whisper": self.whisper.to_dict(),
"vad": self.vad.to_dict(),
"diarization": self.diarization.to_dict(),
"bgm_separation": self.bgm_separation.to_dict()
}
return data
def to_list(self) -> List:
"""
Convert data class to the list because I have to pass the parameters as a list in the gradio.
Related Gradio issue: https://github.com/gradio-app/gradio/issues/2471
See more about Gradio pre-processing: https://www.gradio.app/docs/components
"""
whisper_list = self.whisper.to_list()
vad_list = self.vad.to_list()
diarization_list = self.diarization.to_list()
bgm_sep_list = self.bgm_separation.to_list()
return whisper_list + vad_list + diarization_list + bgm_sep_list
@staticmethod
def from_list(pipeline_list: List) -> 'TranscriptionPipelineParams':
"""Convert list to the data class again to use it in a function."""
data_list = deepcopy(pipeline_list)
whisper_list = data_list[0:len(WhisperParams.__annotations__)]
data_list = data_list[len(WhisperParams.__annotations__):]
vad_list = data_list[0:len(VadParams.__annotations__)]
data_list = data_list[len(VadParams.__annotations__):]
diarization_list = data_list[0:len(DiarizationParams.__annotations__)]
data_list = data_list[len(DiarizationParams.__annotations__):]
bgm_sep_list = data_list[0:len(BGMSeparationParams.__annotations__)]
return TranscriptionPipelineParams(
whisper=WhisperParams.from_list(whisper_list),
vad=VadParams.from_list(vad_list),
diarization=DiarizationParams.from_list(diarization_list),
bgm_separation=BGMSeparationParams.from_list(bgm_sep_list)
)
|