import numpy as np import cv2 import matplotlib.pyplot as plt import torch def resize_max_res(video_rgb, max_res, interpolation=cv2.INTER_LINEAR): """ Resize the video to the max resolution while keeping the aspect ratio. Args: video_rgb: (T, H, W, 3), RGB video, uint8 max_res: int, max resolution Returns: video_rgb: (T, H_new, W_new, 3), resized RGB video, uint8 """ original_height = video_rgb.shape[1] original_width = video_rgb.shape[2] # round the height and width to the nearest multiple of 64 height = round(original_height / 64) * 64 width = round(original_width / 64) * 64 # resize the video if the height or width is larger than max_res if max(height, width) > max_res: scale = max_res / max(original_height, original_width) height = round(original_height * scale / 64) * 64 width = round(original_width * scale / 64) * 64 frames = [] for i in range(video_rgb.shape[0]): frames.append(cv2.resize(video_rgb[i], (width, height), interpolation=interpolation)) frames = np.array(frames) return frames def colorize_video_depth(depth_video, colormap="Spectral"): """ Colorize the depth video using the specified colormap. depth_video: (T, H, W), depth video, [0, 1] return: colored_depth_video: (T, H, W, 3), colored depth video, dtype=uint8 """ if isinstance(depth_video, torch.Tensor): depth_video = depth_video.cpu().numpy() T, H, W = depth_video.shape colored_depth_video = [] for i in range(T): colored_depth = plt.get_cmap(colormap)(depth_video[i], bytes=True)[...,:3] colored_depth_video.append(colored_depth) colored_depth_video = np.stack(colored_depth_video, axis=0) return colored_depth_video