Spaces:
Runtime error
Runtime error
File size: 6,672 Bytes
2fbf361 baea9b2 2fbf361 576e22a baea9b2 2fbf361 ae5c0ef baea9b2 2fbf361 576e22a 2fbf361 d1212b2 2fbf361 baea9b2 2fbf361 576e22a 2fbf361 baea9b2 576e22a 2fbf361 576e22a 2fbf361 baea9b2 576e22a baea9b2 576e22a baea9b2 576e22a baea9b2 576e22a baea9b2 2fbf361 576e22a 2fbf361 baea9b2 576e22a 5ae5bca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
from typing import Tuple, Optional
import gradio as gr
import supervision as sv
import torch
from PIL import Image
from utils.florence import load_florence_model, run_florence_inference, \
FLORENCE_DETAILED_CAPTION_TASK, \
FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK, FLORENCE_OPEN_VOCABULARY_DETECTION_TASK
from utils.modes import INFERENCE_MODES, OPEN_VOCABULARY_DETECTION, \
CAPTION_GROUNDING_MASKS
from utils.sam import load_sam_model, run_sam_inference
MARKDOWN = """
# Florence2 + SAM2 🔥
<div>
<a href="https://github.com/facebookresearch/segment-anything-2">
<img src="https://badges.aleen42.com/src/github.svg" alt="GitHub" style="display:inline-block;">
</a>
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-segment-images-with-sam-2.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab" style="display:inline-block;">
</a>
<a href="https://blog.roboflow.com/what-is-segment-anything-2/">
<img src="https://raw.githubusercontent.com/roboflow-ai/notebooks/main/assets/badges/roboflow-blogpost.svg" alt="Roboflow" style="display:inline-block;">
</a>
<a href="https://www.youtube.com/watch?v=Dv003fTyO-Y">
<img src="https://badges.aleen42.com/src/youtube.svg" alt="YouTube" style="display:inline-block;">
</a>
</div>
This demo integrates Florence2 and SAM2 by creating a two-stage inference pipeline. In
the first stage, Florence2 performs tasks such as object detection, open-vocabulary
object detection, image captioning, or phrase grounding. In the second stage, SAM2
performs object segmentation on the image. **Video segmentation will be available
soon.**
"""
EXAMPLES = [
[OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", 'straw'],
[OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", 'napkin'],
[OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", 'tail'],
[CAPTION_GROUNDING_MASKS, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", None],
[CAPTION_GROUNDING_MASKS, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", None],
]
DEVICE = torch.device("cuda")
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
SAM_MODEL = load_sam_model(device=DEVICE)
BOX_ANNOTATOR = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
LABEL_ANNOTATOR = sv.LabelAnnotator(
color_lookup=sv.ColorLookup.INDEX,
text_position=sv.Position.CENTER_OF_MASS,
text_color=sv.Color.from_hex("#FFFFFF"),
border_radius=5
)
MASK_ANNOTATOR = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX)
def annotate_image(image, detections):
output_image = image.copy()
output_image = MASK_ANNOTATOR.annotate(output_image, detections)
output_image = BOX_ANNOTATOR.annotate(output_image, detections)
output_image = LABEL_ANNOTATOR.annotate(output_image, detections)
return output_image
def on_mode_dropdown_change(text):
return [
gr.Textbox(visible=text == OPEN_VOCABULARY_DETECTION),
gr.Textbox(visible=text == CAPTION_GROUNDING_MASKS),
]
def process(
mode_dropdown, image_input, text_input
) -> Tuple[Optional[Image.Image], Optional[str]]:
if not image_input:
return None, None
if mode_dropdown == OPEN_VOCABULARY_DETECTION:
if not text_input:
return None, None
_, result = run_florence_inference(
model=FLORENCE_MODEL,
processor=FLORENCE_PROCESSOR,
device=DEVICE,
image=image_input,
task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK,
text=text_input
)
detections = sv.Detections.from_lmm(
lmm=sv.LMM.FLORENCE_2,
result=result,
resolution_wh=image_input.size
)
detections = run_sam_inference(SAM_MODEL, image_input, detections)
return annotate_image(image_input, detections), None
if mode_dropdown == CAPTION_GROUNDING_MASKS:
_, result = run_florence_inference(
model=FLORENCE_MODEL,
processor=FLORENCE_PROCESSOR,
device=DEVICE,
image=image_input,
task=FLORENCE_DETAILED_CAPTION_TASK
)
caption = result[FLORENCE_DETAILED_CAPTION_TASK]
_, result = run_florence_inference(
model=FLORENCE_MODEL,
processor=FLORENCE_PROCESSOR,
device=DEVICE,
image=image_input,
task=FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK,
text=caption
)
detections = sv.Detections.from_lmm(
lmm=sv.LMM.FLORENCE_2,
result=result,
resolution_wh=image_input.size
)
detections = run_sam_inference(SAM_MODEL, image_input, detections)
return annotate_image(image_input, detections), caption
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
mode_dropdown_component = gr.Dropdown(
choices=INFERENCE_MODES,
value=INFERENCE_MODES[0],
label="Mode",
info="Select a mode to use.",
interactive=True
)
with gr.Row():
with gr.Column():
image_input_component = gr.Image(
type='pil', label='Upload image')
text_input_component = gr.Textbox(
label='Text prompt')
submit_button_component = gr.Button(value='Submit', variant='primary')
with gr.Column():
image_output_component = gr.Image(type='pil', label='Image output')
text_output_component = gr.Textbox(label='Caption output', visible=False)
with gr.Row():
gr.Examples(
fn=process,
examples=EXAMPLES,
inputs=[
mode_dropdown_component,
image_input_component,
text_input_component
],
outputs=[
image_output_component,
text_output_component
],
run_on_click=True
)
submit_button_component.click(
fn=process,
inputs=[
mode_dropdown_component,
image_input_component,
text_input_component
],
outputs=[
image_output_component,
text_output_component
]
)
mode_dropdown_component.change(
on_mode_dropdown_change,
inputs=[mode_dropdown_component],
outputs=[
text_input_component,
text_output_component
]
)
demo.launch(debug=False, show_error=True)
|