File size: 6,672 Bytes
2fbf361
baea9b2
 
 
 
 
 
2fbf361
 
576e22a
 
 
 
baea9b2
 
2fbf361
 
ae5c0ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baea9b2
 
2fbf361
576e22a
 
 
 
 
2fbf361
 
d1212b2
2fbf361
 
baea9b2
2fbf361
 
 
576e22a
2fbf361
 
 
baea9b2
 
576e22a
 
 
 
 
 
2fbf361
 
576e22a
 
 
 
 
2fbf361
baea9b2
576e22a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baea9b2
 
 
 
576e22a
 
 
 
 
 
 
baea9b2
 
 
 
576e22a
 
baea9b2
 
 
576e22a
baea9b2
2fbf361
 
 
 
576e22a
 
 
 
 
2fbf361
 
 
 
 
 
baea9b2
576e22a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ae5bca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from typing import Tuple, Optional

import gradio as gr
import supervision as sv
import torch
from PIL import Image

from utils.florence import load_florence_model, run_florence_inference, \
    FLORENCE_DETAILED_CAPTION_TASK, \
    FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK, FLORENCE_OPEN_VOCABULARY_DETECTION_TASK
from utils.modes import INFERENCE_MODES, OPEN_VOCABULARY_DETECTION, \
    CAPTION_GROUNDING_MASKS
from utils.sam import load_sam_model, run_sam_inference

MARKDOWN = """
# Florence2 + SAM2 🔥

<div>
    <a href="https://github.com/facebookresearch/segment-anything-2">
        <img src="https://badges.aleen42.com/src/github.svg" alt="GitHub" style="display:inline-block;">
    </a>
    <a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-segment-images-with-sam-2.ipynb">
        <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab" style="display:inline-block;">
    </a>
    <a href="https://blog.roboflow.com/what-is-segment-anything-2/">
        <img src="https://raw.githubusercontent.com/roboflow-ai/notebooks/main/assets/badges/roboflow-blogpost.svg" alt="Roboflow" style="display:inline-block;">
    </a>
    <a href="https://www.youtube.com/watch?v=Dv003fTyO-Y">
        <img src="https://badges.aleen42.com/src/youtube.svg" alt="YouTube" style="display:inline-block;">
    </a>
</div>

This demo integrates Florence2 and SAM2 by creating a two-stage inference pipeline. In 
the first stage, Florence2 performs tasks such as object detection, open-vocabulary 
object detection, image captioning, or phrase grounding. In the second stage, SAM2 
performs object segmentation on the image. **Video segmentation will be available 
soon.**
"""

EXAMPLES = [
    [OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", 'straw'],
    [OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", 'napkin'],
    [OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", 'tail'],
    [CAPTION_GROUNDING_MASKS, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", None],
    [CAPTION_GROUNDING_MASKS, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", None],
]

DEVICE = torch.device("cuda")
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
SAM_MODEL = load_sam_model(device=DEVICE)
BOX_ANNOTATOR = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
LABEL_ANNOTATOR = sv.LabelAnnotator(
    color_lookup=sv.ColorLookup.INDEX,
    text_position=sv.Position.CENTER_OF_MASS,
    text_color=sv.Color.from_hex("#FFFFFF"),
    border_radius=5
)
MASK_ANNOTATOR = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX)


def annotate_image(image, detections):
    output_image = image.copy()
    output_image = MASK_ANNOTATOR.annotate(output_image, detections)
    output_image = BOX_ANNOTATOR.annotate(output_image, detections)
    output_image = LABEL_ANNOTATOR.annotate(output_image, detections)
    return output_image


def on_mode_dropdown_change(text):
    return [
        gr.Textbox(visible=text == OPEN_VOCABULARY_DETECTION),
        gr.Textbox(visible=text == CAPTION_GROUNDING_MASKS),
    ]


def process(
    mode_dropdown, image_input, text_input
) -> Tuple[Optional[Image.Image], Optional[str]]:
    if not image_input:
        return None, None

    if mode_dropdown == OPEN_VOCABULARY_DETECTION:
        if not text_input:
            return None, None

        _, result = run_florence_inference(
            model=FLORENCE_MODEL,
            processor=FLORENCE_PROCESSOR,
            device=DEVICE,
            image=image_input,
            task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK,
            text=text_input
        )
        detections = sv.Detections.from_lmm(
            lmm=sv.LMM.FLORENCE_2,
            result=result,
            resolution_wh=image_input.size
        )
        detections = run_sam_inference(SAM_MODEL, image_input, detections)
        return annotate_image(image_input, detections), None

    if mode_dropdown == CAPTION_GROUNDING_MASKS:
        _, result = run_florence_inference(
            model=FLORENCE_MODEL,
            processor=FLORENCE_PROCESSOR,
            device=DEVICE,
            image=image_input,
            task=FLORENCE_DETAILED_CAPTION_TASK
        )
        caption = result[FLORENCE_DETAILED_CAPTION_TASK]
        _, result = run_florence_inference(
            model=FLORENCE_MODEL,
            processor=FLORENCE_PROCESSOR,
            device=DEVICE,
            image=image_input,
            task=FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK,
            text=caption
        )
        detections = sv.Detections.from_lmm(
            lmm=sv.LMM.FLORENCE_2,
            result=result,
            resolution_wh=image_input.size
        )
        detections = run_sam_inference(SAM_MODEL, image_input, detections)
        return annotate_image(image_input, detections), caption


with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    mode_dropdown_component = gr.Dropdown(
        choices=INFERENCE_MODES,
        value=INFERENCE_MODES[0],
        label="Mode",
        info="Select a mode to use.",
        interactive=True
    )
    with gr.Row():
        with gr.Column():
            image_input_component = gr.Image(
                type='pil', label='Upload image')
            text_input_component = gr.Textbox(
                label='Text prompt')
            submit_button_component = gr.Button(value='Submit', variant='primary')
        with gr.Column():
            image_output_component = gr.Image(type='pil', label='Image output')
            text_output_component = gr.Textbox(label='Caption output', visible=False)

    with gr.Row():
        gr.Examples(
            fn=process,
            examples=EXAMPLES,
            inputs=[
                mode_dropdown_component,
                image_input_component,
                text_input_component
            ],
            outputs=[
                image_output_component,
                text_output_component
            ],
            run_on_click=True
        )

    submit_button_component.click(
        fn=process,
        inputs=[
            mode_dropdown_component,
            image_input_component,
            text_input_component
        ],
        outputs=[
            image_output_component,
            text_output_component
        ]
    )
    mode_dropdown_component.change(
        on_mode_dropdown_change,
        inputs=[mode_dropdown_component],
        outputs=[
            text_input_component,
            text_output_component
        ]
    )

demo.launch(debug=False, show_error=True)