Spaces:
Running
Running
import math | |
import struct | |
import inspect | |
import time | |
from .LMConfig import LMConfig | |
from typing import Any, Optional, Tuple, List | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from transformers import PreTrainedModel | |
from transformers.modeling_outputs import CausalLMOutputWithPast | |
class RMSNorm(torch.nn.Module): | |
def __init__(self, dim: int, eps: float): | |
super().__init__() | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(dim)) | |
def forward(self, x): | |
return self.weight * (x.float() * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)).type_as(x) | |
def precompute_pos_cis(dim: int, end: int, theta: float = 1e4): | |
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) | |
t = torch.arange(end, device=freqs.device) # type: ignore | |
freqs = torch.outer(t, freqs).float() # type: ignore | |
pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 | |
return pos_cis | |
def apply_rotary_emb(xq, xk, pos_cis): | |
def unite_shape(pos_cis, x): | |
ndim = x.ndim | |
assert 0 <= 1 < ndim | |
assert pos_cis.shape == (x.shape[1], x.shape[-1]) | |
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] | |
return pos_cis.view(*shape) | |
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) | |
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) | |
pos_cis = unite_shape(pos_cis, xq_) | |
xq_out = torch.view_as_real(xq_ * pos_cis).flatten(3) | |
xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3) | |
return xq_out.type_as(xq), xk_out.type_as(xk) | |
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor: | |
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)""" | |
bs, slen, n_kv_heads, head_dim = x.shape | |
if n_rep == 1: | |
return x | |
return ( | |
x[:, :, :, None, :] | |
.expand(bs, slen, n_kv_heads, n_rep, head_dim) | |
.reshape(bs, slen, n_kv_heads * n_rep, head_dim) | |
) | |
class Attention(nn.Module): | |
def __init__(self, args: LMConfig): | |
super().__init__() | |
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads | |
assert args.n_heads % self.n_kv_heads == 0 | |
self.n_local_heads = args.n_heads | |
self.n_local_kv_heads = self.n_kv_heads | |
self.n_rep = self.n_local_heads // self.n_local_kv_heads | |
self.head_dim = args.dim // args.n_heads | |
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False) | |
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False) | |
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False) | |
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False) | |
self.attn_dropout = nn.Dropout(args.dropout) | |
self.resid_dropout = nn.Dropout(args.dropout) | |
self.dropout = args.dropout | |
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn | |
# print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0") | |
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf")) | |
mask = torch.triu(mask, diagonal=1) | |
self.register_buffer("mask", mask, persistent=False) | |
def forward(self, | |
x: torch.Tensor, | |
pos_cis: torch.Tensor, | |
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
use_cache=False): | |
bsz, seq_len, _ = x.shape | |
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) | |
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim) | |
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) | |
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) | |
xq, xk = apply_rotary_emb(xq, xk, pos_cis) | |
# kv_cache实现 | |
if past_key_value is not None: | |
xk = torch.cat([past_key_value[0], xk], dim=1) | |
xv = torch.cat([past_key_value[1], xv], dim=1) | |
past_kv = (xk, xv) if use_cache else None | |
xq, xk, xv = ( | |
xq.transpose(1, 2), | |
repeat_kv(xk, self.n_rep).transpose(1, 2), | |
repeat_kv(xv, self.n_rep).transpose(1, 2) | |
) | |
if self.flash and seq_len != 1: | |
dropout_p = self.dropout if self.training else 0.0 | |
output = F.scaled_dot_product_attention( | |
xq, xk, xv, | |
attn_mask=None, | |
dropout_p=dropout_p, | |
is_causal=True | |
) | |
else: | |
scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim) | |
scores += self.mask[:, :, :seq_len, :seq_len] | |
scores = F.softmax(scores.float(), dim=-1).type_as(xq) | |
scores = self.attn_dropout(scores) | |
output = scores @ xv | |
output = output.transpose(1, 2).reshape(bsz, seq_len, -1) | |
output = self.resid_dropout(self.wo(output)) | |
return output, past_kv | |
class FeedForward(nn.Module): | |
def __init__(self, config: LMConfig): | |
super().__init__() | |
if config.hidden_dim is None: | |
hidden_dim = 4 * config.dim | |
hidden_dim = int(2 * hidden_dim / 3) | |
config.hidden_dim = config.multiple_of * ((hidden_dim + config.multiple_of - 1) // config.multiple_of) | |
self.w1 = nn.Linear(config.dim, config.hidden_dim, bias=False) | |
self.w2 = nn.Linear(config.hidden_dim, config.dim, bias=False) | |
self.w3 = nn.Linear(config.dim, config.hidden_dim, bias=False) | |
self.dropout = nn.Dropout(config.dropout) | |
def forward(self, x): | |
return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x))) | |
class MoEGate(nn.Module): | |
def __init__(self, config: LMConfig): | |
super().__init__() | |
self.config = config | |
self.top_k = config.num_experts_per_tok | |
self.n_routed_experts = config.n_routed_experts | |
self.scoring_func = config.scoring_func | |
self.alpha = config.aux_loss_alpha | |
self.seq_aux = config.seq_aux | |
self.norm_topk_prob = config.norm_topk_prob | |
self.gating_dim = config.dim | |
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim))) | |
self.reset_parameters() | |
def reset_parameters(self) -> None: | |
import torch.nn.init as init | |
init.kaiming_uniform_(self.weight, a=math.sqrt(5)) | |
def forward(self, hidden_states): | |
bsz, seq_len, h = hidden_states.shape | |
hidden_states = hidden_states.view(-1, h) | |
logits = F.linear(hidden_states, self.weight, None) | |
if self.scoring_func == 'softmax': | |
scores = logits.softmax(dim=-1) | |
else: | |
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}') | |
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False) | |
if self.top_k > 1 and self.norm_topk_prob: | |
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20 | |
topk_weight = topk_weight / denominator | |
if self.training and self.alpha > 0.0: | |
scores_for_aux = scores | |
aux_topk = self.top_k | |
topk_idx_for_aux_loss = topk_idx.view(bsz, -1) | |
if self.seq_aux: | |
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1) | |
ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device) | |
ce.scatter_add_(1, topk_idx_for_aux_loss, | |
torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_( | |
seq_len * aux_topk / self.n_routed_experts) | |
aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean() * self.alpha | |
else: | |
mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts) | |
ce = mask_ce.float().mean(0) | |
Pi = scores_for_aux.mean(0) | |
fi = ce * self.n_routed_experts | |
aux_loss = (Pi * fi).sum() * self.alpha | |
else: | |
aux_loss = 0 | |
return topk_idx, topk_weight, aux_loss | |
class MOEFeedForward(nn.Module): | |
def __init__(self, config: LMConfig): | |
super().__init__() | |
self.config = config | |
self.experts = nn.ModuleList([ | |
FeedForward(config) | |
for _ in range(config.n_routed_experts) | |
]) | |
self.gate = MoEGate(config) | |
if config.n_shared_experts is not None: | |
self.shared_experts = FeedForward(config) | |
def forward(self, x): | |
identity = x | |
orig_shape = x.shape | |
bsz, seq_len, _ = x.shape | |
# 使用门控机制选择专家 | |
topk_idx, topk_weight, aux_loss = self.gate(x) | |
x = x.view(-1, x.shape[-1]) | |
flat_topk_idx = topk_idx.view(-1) | |
if self.training: | |
# 训练模式下,重复输入数据 | |
x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0) | |
y = torch.empty_like(x, dtype=torch.float16) | |
for i, expert in enumerate(self.experts): | |
y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(y.dtype) # 确保类型一致 | |
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) | |
y = y.view(*orig_shape) | |
else: | |
# 推理模式下,只选择最优专家 | |
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape) | |
if self.config.n_shared_experts is not None: | |
y = y + self.shared_experts(identity) | |
self.aux_loss = aux_loss | |
return y | |
def moe_infer(self, x, flat_expert_indices, flat_expert_weights): | |
expert_cache = torch.zeros_like(x) | |
idxs = flat_expert_indices.argsort() | |
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0) | |
token_idxs = idxs // self.config.num_experts_per_tok | |
# 例如当tokens_per_expert=[6, 15, 20, 26, 33, 38, 46, 52] | |
# 当token_idxs=[3, 7, 19, 21, 24, 25, 4, 5, 6, 10, 11, 12...] | |
# 意味着当token_idxs[:6] -> [3, 7, 19, 21, 24, 25, 4]位置的token都由专家0处理,token_idxs[6:15]位置的token都由专家1处理...... | |
for i, end_idx in enumerate(tokens_per_expert): | |
start_idx = 0 if i == 0 else tokens_per_expert[i - 1] | |
if start_idx == end_idx: | |
continue | |
expert = self.experts[i] | |
exp_token_idx = token_idxs[start_idx:end_idx] | |
expert_tokens = x[exp_token_idx] | |
expert_out = expert(expert_tokens).to(expert_cache.dtype) | |
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]]) | |
# 使用 scatter_add_ 进行 sum 操作 | |
expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out) | |
return expert_cache | |
class MiniMindBlock(nn.Module): | |
def __init__(self, layer_id: int, config: LMConfig): | |
super().__init__() | |
self.n_heads = config.n_heads | |
self.dim = config.dim | |
self.head_dim = config.dim // config.n_heads | |
self.attention = Attention(config) | |
self.layer_id = layer_id | |
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps) | |
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps) | |
self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config) | |
def forward(self, x, pos_cis, past_key_value=None, use_cache=False): | |
h_attn, past_kv = self.attention( | |
self.attention_norm(x), | |
pos_cis, | |
past_key_value=past_key_value, | |
use_cache=use_cache | |
) | |
h = x + h_attn | |
out = h + self.feed_forward(self.ffn_norm(h)) | |
return out, past_kv | |
class MiniMindLM(PreTrainedModel): | |
config_class = LMConfig | |
def __init__(self, params: LMConfig = None): | |
self.params = params or LMConfig() | |
super().__init__(self.params) | |
self.vocab_size, self.n_layers = params.vocab_size, params.n_layers | |
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim) | |
self.dropout = nn.Dropout(params.dropout) | |
self.layers = nn.ModuleList([MiniMindBlock(l, params) for l in range(self.n_layers)]) | |
self.norm = RMSNorm(params.dim, eps=params.norm_eps) | |
self.output = nn.Linear(params.dim, params.vocab_size, bias=False) | |
self.tok_embeddings.weight = self.output.weight | |
self.register_buffer("pos_cis", precompute_pos_cis(params.dim // params.n_heads, params.max_seq_len, | |
theta=params.rope_theta), persistent=False) | |
self.OUT = CausalLMOutputWithPast() | |
def forward(self, | |
input_ids: Optional[torch.Tensor] = None, | |
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, | |
use_cache: bool = False, | |
**args): | |
past_key_values = past_key_values or [None] * len(self.layers) | |
start_pos = args.get('start_pos', 0) | |
h = self.dropout(self.tok_embeddings(input_ids)) | |
pos_cis = self.pos_cis[start_pos:start_pos + input_ids.size(1)] | |
past_kvs = [] | |
for l, layer in enumerate(self.layers): | |
h, past_kv = layer( | |
h, pos_cis, | |
past_key_value=past_key_values[l], | |
use_cache=use_cache | |
) | |
past_kvs.append(past_kv) | |
logits = self.output(self.norm(h)) | |
aux_loss = sum(l.feed_forward.aux_loss for l in self.layers if isinstance(l.feed_forward, MOEFeedForward)) | |
self.OUT.__setitem__('logits', logits) | |
self.OUT.__setitem__('aux_loss', aux_loss) | |
self.OUT.__setitem__('past_key_values', past_kvs) | |
return self.OUT | |
def generate(self, input_ids, eos_token_id=2, max_new_tokens=1024, temperature=0.75, top_p=0.90, | |
stream=False, rp=1., use_cache=True, pad_token_id=0, **args): | |
# 流式生成 | |
if stream: | |
return self._generate_stream(input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache) | |
# 直接生成 | |
generated = [] | |
for i in range(input_ids.size(0)): | |
non_pad = input_ids[i][input_ids[i] != pad_token_id].unsqueeze(0) | |
out = self._generate_stream(non_pad, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache) | |
tokens_list = [tokens[:, -1:] for tokens in out] | |
gen = torch.cat(tokens_list, dim=-1) if tokens_list else non_pad | |
full_sequence = torch.cat([non_pad, gen], dim=-1) | |
generated.append(full_sequence) | |
max_length = max(seq.size(1) for seq in generated) | |
generated = [ | |
torch.cat( | |
[seq, torch.full((1, max_length - seq.size(1)), pad_token_id, dtype=seq.dtype, device=seq.device)], | |
dim=-1) | |
for seq in generated | |
] | |
return torch.cat(generated, dim=0) | |
def _generate_stream(self, input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache, **args): | |
start, first_seq, past_kvs = input_ids.shape[1], True, None | |
while input_ids.shape[1] < max_new_tokens - 1: | |
if first_seq or not use_cache: | |
out, first_seq = self(input_ids, past_key_values=past_kvs, use_cache=use_cache), False | |
else: | |
out = self(input_ids[:, -1:], past_key_values=past_kvs, use_cache=use_cache, | |
start_pos=input_ids.shape[1] - 1) | |
logits, past_kvs = out.logits[:, -1, :], out.past_key_values | |
logits[:, list(set(input_ids.tolist()[0]))] /= rp | |
logits /= (temperature + 1e-9) | |
if top_p is not None and top_p < 1.0: | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1) | |
sorted_probs = F.softmax(sorted_logits, dim=-1) | |
cumulative_probs = torch.cumsum(sorted_probs, dim=-1) | |
sorted_indices_to_remove = cumulative_probs > top_p | |
sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone() | |
sorted_indices_to_remove[:, 0] = False | |
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) | |
logits[indices_to_remove] = -float('Inf') | |
input_ids_next = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1) | |
input_ids = torch.cat((input_ids, input_ids_next), dim=1) | |
yield input_ids[:, start:] | |
if input_ids_next.item() == eos_token_id: | |
break | |