File size: 6,390 Bytes
134cb11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
"""
Segmentation metric code dapted from code for XView2: A Strong Baseline
Xview2_Strong_Baseline/legacy/xview2_metrics.py
Xview2_Strong_Baseline/legacy/create_masks.py
"""
# add python path
# import sys
# import os
# sys.path.append('/deep/u/emily712/aicc-win24-geo-vlm/videollava/')

import json
import string
import numpy as np
import cv2
from collections import defaultdict, Counter
from nltk.tokenize import word_tokenize
from shapely.geometry import Polygon
from pathlib import Path
from sklearn.metrics import f1_score
from tqdm import tqdm


def compute_tp_fn_fp(pred: np.ndarray, targ: np.ndarray, c: int):
    """
    Computes the number of TPs, FNs, FPs, between a prediction (x) and a target (y) for the desired class (c)

    Args:
        pred (np.ndarray): prediction
        targ (np.ndarray): target
        c (int): positive class
    """
    TP = np.logical_and(pred == c, targ == c).sum()
    FN = np.logical_and(pred != c, targ == c).sum()
    FP = np.logical_and(pred == c, targ != c).sum()
    return [TP, FN, FP]


def accuracy_precision_recall(answer_path, dataset, ignore_punctuation=True, verbose=True):
    # Replace with the path to the answers file
    if type(answer_path) == dict:
        results = answer_path
    else:
        with open(answer_path) as json_data:
            results = json.load(json_data)

    task_total = defaultdict(int)
    task_tp = defaultdict(int)

    binary_classification = defaultdict(bool)
    binary_fp = defaultdict(int)
    binary_fn = defaultdict(int)

    # Dictionary of dictionaries. Key: task. Value: {class: count}
    ground_truths = defaultdict(dict)

    values = defaultdict(list)

    accepted_tasks = [
        "temporal_question_answering",
        "region_based_question_answering",
        "temporal_region_based_question_answering",
        "question_answering",
        "temporal_referring_expression",
        "rural_urban",
        "comp",
        "presence",
        "count",
        "change_to_what",
        "smallest_change",
        "change_or_not",
        "change_ratio",
        "largest_change",
        "change_ratio_types",
        "increase_or_not",
        "decrease_or_not"
    ]

    for result in results.values():
        if "task" in result and not any(result["task"].startswith(task) for task in accepted_tasks):
            continue

        # Clean predicted string if necessary
        result["predicted"] = result["predicted"].lower()
        result["ground_truth"] = result["ground_truth"].lower()
        if ignore_punctuation:
            result["predicted"] = ''.join(ch for ch in result["predicted"] if ch not in string.punctuation)
            result["ground_truth"] = ''.join(ch for ch in result["ground_truth"] if ch not in string.punctuation)
        if verbose:
            values["predicted"].append(result["predicted"])
            values["ground_truth"].append(result["ground_truth"])
            values["correct_incorrect"].append("Correct" if result["predicted"] == result["ground_truth"] else "Incorrect")
        if "task" not in result:
            result["task"] = dataset

        # True positive
        if result["predicted"] == result["ground_truth"]:
            task_tp[result["task"]] += 1
        task_total[result["task"]] += 1

        # If binary classification (yes/no question), calculate precision and recall metrics
        binary_classification[result["task"]] = binary_classification[result["task"]] or (result["ground_truth"] in ["yes", "no"])
        if binary_classification[result["task"]]:
            if result["predicted"] != "no" and result["ground_truth"] == "no":
                binary_fp[result["task"]] += 1
            if result["predicted"] != "yes" and result["ground_truth"] == "yes": 
                binary_fn[result["task"]] += 1

        # Update ground truth counts for the task
        task = result["task"]
        class_label = result["ground_truth"]
        ground_truths[task][class_label] = ground_truths[task].get(class_label, 0) + 1
    
    # Print tab separated values
    if verbose:
        max_len = max(len(v) for v in values["ground_truth"]) + 5
        print("Predicted" + " " * (max_len - 9) + "\tGround Truth" + " " * (max_len - 12) + "\tCorrect/Incorrect")
        for i in range(len(values["predicted"])):
            print(values["predicted"][i] + " " * (max_len - len(values["predicted"][i])) + "\t" + values["ground_truth"][i] + " " * (max_len - len(values["ground_truth"][i])) + "\t" + values["correct_incorrect"][i])

    total_tp = 0
    total_predictions = 0
    for task in task_tp:
        acc_string = "Accuracy"
        if ignore_punctuation:
            acc_string += " (ignoring punctuation)"
        print(f"{acc_string} for {task}: {round((task_tp[task] /  task_total[task]), 4) * 100}%")

        if binary_classification[task]:
            if (task_tp[task] + binary_fp[task]) > 0:
                print(f"Precision (ignoring punctuation) for {task}: {round((task_tp[task] / (task_tp[task] + binary_fp[task])), 3) * 100}%")
            if (task_tp[task] + binary_fn[task]) > 0:
                print(f"Recall (ignoring punctuation) for {task}: {round((task_tp[task] / (task_tp[task] + binary_fn[task])), 3) * 100}%")

        majority_class = max(ground_truths[task], key=ground_truths[task].get)
        majority_class_percentage = (ground_truths[task][majority_class] / task_total[task]) * 100
        print(f"Majority class for {task}: {majority_class}, Percentage: {round(majority_class_percentage, 4)}%")

        total_tp += task_tp[task]
        total_predictions += task_total[task]

    if total_predictions == 0:
        print("No predictions made.")
    else:
        total_accuracy = (total_tp / total_predictions) * 100
        print(f"Overall Accuracy: {round(total_accuracy, 3)}%")

# For testing accuracy/precision/recall on a particular script without running inference
if __name__ == '__main__':
    root_dir = '/deep/u/jirvin16/aicc/aicc-win24-geo-vlm/videollava/scripts/geovlm/eval/QFabric/answers/'
    answer_path =  root_dir + "video-llava-7b-8bit-lora-final-no-metadata-zero-gc-acc8-freq-no-geochat-checkpoint-8000_qfabric_test_aux_data_test_prompt_strategy_interleave_chronological_prefix_True_load_8bit_True_load_4bit_False_delete_system_prompt_False.json"
    accuracy_precision_recall(answer_path, dataset="qfabric", ignore_punctuation=True, verbose=False)