jjkim
commited on
Commit
·
b446f13
1
Parent(s):
886eb21
separate timelimits
Browse files- code_eval.py +52 -15
code_eval.py
CHANGED
@@ -22,13 +22,12 @@ from collections import Counter, defaultdict
|
|
22 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
23 |
|
24 |
import datasets
|
25 |
-
import numpy as np
|
26 |
-
|
27 |
import evaluate
|
|
|
|
|
28 |
|
29 |
from .execute import check_correctness
|
30 |
|
31 |
-
|
32 |
_CITATION = """\
|
33 |
@misc{chen2021evaluating,
|
34 |
title={Evaluating Large Language Models Trained on Code},
|
@@ -143,7 +142,7 @@ class CodeEval(evaluate.Metric):
|
|
143 |
features=datasets.Features(
|
144 |
{
|
145 |
"predictions": datasets.Sequence(datasets.Value("string")),
|
146 |
-
"references": datasets.Value("string"),
|
147 |
}
|
148 |
),
|
149 |
homepage="https://github.com/openai/human-eval",
|
@@ -152,33 +151,65 @@ class CodeEval(evaluate.Metric):
|
|
152 |
license=_LICENSE,
|
153 |
)
|
154 |
|
155 |
-
def _compute(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
"""Returns the scores"""
|
157 |
|
158 |
if os.getenv("HF_ALLOW_CODE_EVAL", 0) != "1":
|
159 |
raise ValueError(_WARNING)
|
160 |
|
161 |
if os.name == "nt":
|
162 |
-
raise NotImplementedError(
|
|
|
|
|
163 |
|
164 |
with ThreadPoolExecutor(max_workers=num_workers) as executor:
|
165 |
futures = []
|
166 |
completion_id = Counter()
|
167 |
-
n_samples = 0
|
168 |
results = defaultdict(list)
|
169 |
|
170 |
-
for task_id, (candidates, test_case) in enumerate(
|
|
|
|
|
171 |
for candidate in candidates:
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
completion_id[task_id] += 1
|
177 |
-
n_samples += 1
|
178 |
|
|
|
179 |
for future in as_completed(futures):
|
180 |
result = future.result()
|
181 |
results[result["task_id"]].append((result["completion_id"], result))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
total, correct = [], []
|
184 |
for result in results.values():
|
@@ -190,7 +221,11 @@ class CodeEval(evaluate.Metric):
|
|
190 |
correct = np.array(correct)
|
191 |
|
192 |
ks = k
|
193 |
-
pass_at_k = {
|
|
|
|
|
|
|
|
|
194 |
|
195 |
return pass_at_k, results
|
196 |
|
@@ -210,4 +245,6 @@ def estimate_pass_at_k(num_samples, num_correct, k):
|
|
210 |
assert len(num_samples) == len(num_correct)
|
211 |
num_samples_it = iter(num_samples)
|
212 |
|
213 |
-
return np.array(
|
|
|
|
|
|
22 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
23 |
|
24 |
import datasets
|
|
|
|
|
25 |
import evaluate
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
|
29 |
from .execute import check_correctness
|
30 |
|
|
|
31 |
_CITATION = """\
|
32 |
@misc{chen2021evaluating,
|
33 |
title={Evaluating Large Language Models Trained on Code},
|
|
|
142 |
features=datasets.Features(
|
143 |
{
|
144 |
"predictions": datasets.Sequence(datasets.Value("string")),
|
145 |
+
"references": datasets.Sequence(datasets.Value("string")),
|
146 |
}
|
147 |
),
|
148 |
homepage="https://github.com/openai/human-eval",
|
|
|
151 |
license=_LICENSE,
|
152 |
)
|
153 |
|
154 |
+
def _compute(
|
155 |
+
self,
|
156 |
+
predictions,
|
157 |
+
references,
|
158 |
+
k=[1, 10, 100],
|
159 |
+
num_workers=4,
|
160 |
+
timeout=3.0,
|
161 |
+
):
|
162 |
"""Returns the scores"""
|
163 |
|
164 |
if os.getenv("HF_ALLOW_CODE_EVAL", 0) != "1":
|
165 |
raise ValueError(_WARNING)
|
166 |
|
167 |
if os.name == "nt":
|
168 |
+
raise NotImplementedError(
|
169 |
+
"This metric is currently not supported on Windows."
|
170 |
+
)
|
171 |
|
172 |
with ThreadPoolExecutor(max_workers=num_workers) as executor:
|
173 |
futures = []
|
174 |
completion_id = Counter()
|
|
|
175 |
results = defaultdict(list)
|
176 |
|
177 |
+
for task_id, (candidates, test_case) in enumerate(
|
178 |
+
zip(predictions, references)
|
179 |
+
):
|
180 |
for candidate in candidates:
|
181 |
+
for _test_case in test_case:
|
182 |
+
assert isinstance(_test_case, str)
|
183 |
+
test_program = candidate + "\n" + _test_case
|
184 |
+
args = (
|
185 |
+
test_program,
|
186 |
+
timeout,
|
187 |
+
task_id,
|
188 |
+
completion_id[task_id],
|
189 |
+
)
|
190 |
+
future = executor.submit(check_correctness, *args)
|
191 |
+
futures.append(future)
|
192 |
completion_id[task_id] += 1
|
|
|
193 |
|
194 |
+
pbar = tqdm(total=len(futures))
|
195 |
for future in as_completed(futures):
|
196 |
result = future.result()
|
197 |
results[result["task_id"]].append((result["completion_id"], result))
|
198 |
+
pbar.update(1)
|
199 |
+
|
200 |
+
for result in results.values():
|
201 |
+
new_result = []
|
202 |
+
for completion_id, group in itertools.groupby(results, key=lambda x: x[0]):
|
203 |
+
group = list(group)
|
204 |
+
new_result.append(
|
205 |
+
dict(
|
206 |
+
task_id=group[0]["task_id"],
|
207 |
+
passed=all(r["passed"] for r in group),
|
208 |
+
result=[r["result"] for r in group],
|
209 |
+
completion_id=completion_id,
|
210 |
+
)
|
211 |
+
)
|
212 |
+
result = new_result
|
213 |
|
214 |
total, correct = [], []
|
215 |
for result in results.values():
|
|
|
221 |
correct = np.array(correct)
|
222 |
|
223 |
ks = k
|
224 |
+
pass_at_k = {
|
225 |
+
f"pass@{k}": estimate_pass_at_k(total, correct, k).mean()
|
226 |
+
for k in ks
|
227 |
+
if (total >= k).all()
|
228 |
+
}
|
229 |
|
230 |
return pass_at_k, results
|
231 |
|
|
|
245 |
assert len(num_samples) == len(num_correct)
|
246 |
num_samples_it = iter(num_samples)
|
247 |
|
248 |
+
return np.array(
|
249 |
+
[estimator(int(n), int(c), k) for n, c in zip(num_samples_it, num_correct)]
|
250 |
+
)
|