Spaces:
Running
Running
File size: 2,256 Bytes
ab2b897 bffc737 ab2b897 f091ddf bffc737 ab2b897 f091ddf bffc737 ab2b897 f091ddf bffc737 f091ddf bffc737 ab2b897 f091ddf bffc737 ab2b897 bffc737 f091ddf bffc737 ab2b897 bffc737 ab2b897 bffc737 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
#%%
from transformers import pipeline
import gradio as gr
import os
#%%
whisper = pipeline(model='jlvdoorn/whisper-large-v2-atco2-asr-atcosim')
bert_atco_ner = pipeline(model='Jzuluaga/bert-base-ner-atc-en-atco2-1h')
#%%
def transcribe(audio_file, audio_mic):
if audio_mic is not None:
return whisper(audio_mic)['text']
elif audio_file is not None:
return whisper(audio_file)['text']
else:
return 'There was no audio to transcribe...'
#%%
def extractCallSignCommand(transcription):
if type(transcription) is str:
result = bert_atco_ner(transcription)
callsigns = []
commands = []
values = []
for item in result:
if 'callsign' in item['entity']:
callsigns.append(item['word'])
if 'command' in item['entity']:
commands.append(item['word'])
if 'value' in item['entity']:
values.append(item['word'])
return 'Callsigns: ' + ', '.join(callsigns) + '\nCommands: ' + ', '.join(commands) + '\nValues: ' + ', '.join(values)
else:
return 'There was no transcription to extract a callsign or command from...'
#%%
def transcribeAndExtract(audio_mic, audio_file, transcribe_only):
transcription = transcribe(audio_mic, audio_file)
if not transcribe_only:
callSignCommandValues = extractCallSignCommand(transcription)
else:
callSignCommandValues = ''
return transcription, callSignCommandValues
#%%
iface = gr.Interface(
fn=transcribeAndExtract,
inputs=[gr.Audio(source='upload', type='filepath'), gr.Audio(source='microphone', type='filepath'), gr.Checkbox(label='Transcribe only', default=False)],
outputs=[gr.Text(label='Transcription'), gr.Text(label='Callsigns, commands and values')],
title='Whisper Large v2 - ATCO2-ASR-ATCOSIM',
description='This demo will transcribe ATC audio files by using the Whisper Large v2 model fine-tuned on the ATCO2 and ATCOSIM datasets. Further it uses a Named Entity Recognition model to extract callsigns, commands and values from the transcription. This model is based on Google\'s BERT model and fine-tuned on the ATCO2 dataset.',
)
#%%
iface.launch() |