WhisperATC / app.py
jlvdoorn's picture
commit 2
10994f7 unverified
raw
history blame
4.67 kB
#%%
from huggingface_hub import login
from transformers import pipeline
from datasets import load_dataset
import gradio as gr
import os
login(token=os.environ['hf_token'])
atco2 = load_dataset('jlvdoorn/atco2-asr', split='validation')
atcosim = load_dataset('jlvdoorn/atcosim', split='validation')
# examples = [atco2[0]['audio']['array'], atcosim[0]['audio']['array'], atco2[1]['audio']['array'], atcosim[1]['audio']['array'], atco2[2]['audio']['array'], atcosim[2]['audio']['array']]
# examples_labels = ['Example ' + str(i+1) for i in range(len(examples))]
bert_atco_ner = pipeline(model='Jzuluaga/bert-base-ner-atc-en-atco2-1h')
whisper_v2 = pipeline(model='jlvdoorn/whisper-large-v2-atco2-asr-atcosim')
whisper_v3 = pipeline(model='jlvdoorn/whisper-large-v3-atco2-asr-atcosim')
#%%
def transcribe(audio, model_version):
if model_version == 'large-v2':
whisper = whisper_v2
ttl = 'Whisper Large v2 - ATCO2-ATCOSIM'
dis = 'This demo will transcribe ATC audio files by using the Whisper Large v2 model fine-tuned on the ATCO2 and ATCOSIM datasets. \n \n Further it uses a Named Entity Recognition model to extract callsigns, commands and values from the transcription. \n This model is based on Google\'s BERT model and fine-tuned on the ATCO2 dataset.'
elif model_version == 'large-v3':
whisper = whisper_v3
ttl = 'Whisper Large v3 - ATCO2-ATCOSIM'
dis = 'This demo will transcribe ATC audio files by using the Whisper Large v3 model fine-tuned on the ATCO2 and ATCOSIM datasets. \n \n Further it uses a Named Entity Recognition model to extract callsigns, commands and values from the transcription. \n This model is based on Google\'s BERT model and fine-tuned on the ATCO2 dataset.'
if audio is not None:
return whisper(audio)['text']
else:
return 'There was no audio to transcribe...'
#%%
def extractCallSignCommand(transcription):
if type(transcription) is str:
result = bert_atco_ner(transcription)
callsigns = []
commands = []
values = []
for item in result:
if 'callsign' in item['entity']:
callsigns.append(item['word'])
if 'command' in item['entity']:
commands.append(item['word'])
if 'value' in item['entity']:
values.append(item['word'])
return 'Callsigns: ' + ', '.join(callsigns) + '\nCommands: ' + ', '.join(commands) + '\nValues: ' + ', '.join(values)
else:
return 'There was no transcription to extract a callsign or command from...'
#%%
def transcribeAndExtract(audio, transcribe_only, model_version):
transcription = transcribe(audio, model_version)
if not transcribe_only:
callSignCommandValues = extractCallSignCommand(transcription)
else:
callSignCommandValues = ''
return transcription, callSignCommandValues
#%%
iface = gr.Interface(
fn=transcribeAndExtract,
inputs=[
gr.Audio(source='upload', type='filepath', interactive=True),
gr.Audio(source='microphone', type='filepath'),
gr.Checkbox(label='Transcribe only', default=False),
gr.Dropdown(choices=['large-v2', 'large-v3'], value='large-v3', label='Whisper model version'),
],
outputs=[gr.Text(label='Transcription'), gr.Text(label='Callsigns, commands and values')],
title='Whisper ATC - Large v3',
description='Transcribe and extract',
# examples = examples,
)
#%%
file_iface = gr.Interface(
fn = transcribeAndExtract,
inputs = [gr.Audio(source='upload', type='filepath', interactive=True),
gr.Checkbox(label='Transcribe only', default=False),
gr.Dropdown(choices=['large-v2', 'large-v3'], value='large-v3', label='Whisper model version')
],
outputs = [gr.Textbox(label='Transcription'), gr.Textbox(label='Callsigns, commands and values')],
title = 'Whisper ATC - Large v3',
description = 'Transcribe and extract',
)
mic_iface = gr.Interface(
fn = transcribeAndExtract,
inputs = [gr.Audio(source='microphone', type='filepath'),
gr.Checkbox(label='Transcribe only', default=False),
gr.Dropdown(choices=['large-v2', 'large-v3'], value='large-v3', label='Whisper model version')
],
outputs = [gr.Textbox(label='Transcription'), gr.Textbox(label='Callsigns, commands and values')],
title = 'Whisper ATC - Large v3',
description = 'Transcribe and extract',
)
#%%
demo = gr.TabbedInterface([file_iface, mic_iface], ["File", "Microphone"])
demo.launch()