WhisperATC / app.py
jlvdoorn's picture
load local model if available else fallback to other model
db11291
raw
history blame
2.53 kB
#%%
from transformers import pipeline
import gradio as gr
import os
## Try to load a local model if available
try:
whisper = pipeline(model='/mnt/projects/whisper/WhisperANSP/Models/whisper-large-v2-atco2-asr-atcosim-ANSP-3h1m', task='automatic-speech-recognition')
except:
whisper = pipeline(model='jlvdoorn/whisper-large-v2-atco2-asr-atcosim')
bert_atco_ner = pipeline(model='Jzuluaga/bert-base-ner-atc-en-atco2-1h')
#%%
def transcribe(audio_file, audio_mic):
if audio_mic is not None:
return whisper(audio_mic)['text']
elif audio_file is not None:
return whisper(audio_file)['text']
else:
return 'There was no audio to transcribe...'
#%%
def extractCallSignCommand(transcription):
if type(transcription) is str:
result = bert_atco_ner(transcription)
callsigns = []
commands = []
values = []
for item in result:
if 'callsign' in item['entity']:
callsigns.append(item['word'])
if 'command' in item['entity']:
commands.append(item['word'])
if 'value' in item['entity']:
values.append(item['word'])
return 'Callsigns: ' + ', '.join(callsigns) + '\nCommands: ' + ', '.join(commands) + '\nValues: ' + ', '.join(values)
else:
return 'There was no transcription to extract a callsign or command from...'
#%%
def transcribeAndExtract(audio_file, audio_mic, transcribe_only):
transcription = transcribe(audio_file, audio_mic)
if not transcribe_only:
callSignCommandValues = extractCallSignCommand(transcription)
else:
callSignCommandValues = ''
return transcription, callSignCommandValues
#%%
iface = gr.Interface(
fn=transcribeAndExtract,
inputs=[gr.Audio(source='upload', type='filepath', interactive=True), gr.Audio(source='microphone', type='filepath'), gr.Checkbox(label='Transcribe only', default=False)],
outputs=[gr.Text(label='Transcription'), gr.Text(label='Callsigns, commands and values')],
title='Whisper Large v2 - ATCO2-ATCOSIM-ANSP',
description='This demo will transcribe ATC audio files by using the Whisper Large v2 model fine-tuned on the ATCO2, ATCOSIM and ANSP datasets. Further it uses a Named Entity Recognition model to extract callsigns, commands and values from the transcription. This model is based on Google\'s BERT model and fine-tuned on the ATCO2 dataset.',
)
#%%
iface.launch(server_name='0.0.0.0', server_port=9000)