jlvdoorn commited on
Commit
be31eba
1 Parent(s): 92a8e26

changed to a single function

Browse files
Files changed (1) hide show
  1. app.py +27 -27
app.py CHANGED
@@ -6,7 +6,7 @@ import os
6
 
7
  #%%
8
  whisper = pipeline(model='jlvdoorn/whisper-large-v2-atco2-asr-atcosim', use_auth_token=os.environ['HUGGINGFACE_TOKEN'])
9
- bert_atco_ner = pipeline(model='Jzuluaga/bert-base-ner-atc-en-atco2-1h')
10
 
11
  #%%
12
  def transcribe(audio_mic, audio_file):
@@ -18,38 +18,38 @@ def transcribe(audio_mic, audio_file):
18
  return 'There was no audio to transcribe...'
19
 
20
  #%%
21
- def extractCallSignCommand(transcription):
22
- if type(transcription) is str:
23
- result = bert_atco_ner(transcription)
24
- callsigns = []
25
- commands = []
26
- values = []
27
- for item in result:
28
- if 'callsign' in item['entity']:
29
- callsigns.append(item['word'])
30
- if 'command' in item['entity']:
31
- commands.append(item['word'])
32
- if 'value' in item['entity']:
33
- values.append(item['word'])
34
 
35
- return 'Callsigns: ' + ', '.join(callsigns) + '\nCommands: ' + ', '.join(commands) + '\nValues: ' + ', '.join(values)
36
- else:
37
- return 'There was no transcription to extract a callsign or command from...'
38
 
39
  #%%
40
- def transcribeAndExtract(audio_mic, audio_file, transcribe_only):
41
- transcription = transcribe(audio_mic, audio_file)
42
- if not transcribe_only:
43
- callSignCommandValues = extractCallSignCommand(transcription)
44
- else:
45
- callSignCommandValues = ''
46
- return transcription, callSignCommandValues
47
 
48
  #%%
49
  iface = gr.Interface(
50
- fn=transcribeAndExtract,
51
- inputs=[gr.Audio(source='microphone', type='filepath'), gr.Audio(source='upload', type='filepath'), gr.Checkbox(label='Transcribe only', default=False)],
52
- outputs=[gr.Text(label='Transcription'), gr.Text(label='Callsigns, commands and values')],
53
  title='Whisper Large v2 - ATCO2-ASR-ATCOSIM',
54
  description='This demo will transcribe ATC audio files by using the Whisper Large v2 model fine-tuned on the ATCO2 and ATCOSIM datasets. Further it uses a Named Entity Recognition model to extract callsigns, commands and values from the transcription. This model is based on Google\'s BERT model and fine-tuned on the ATCO2 dataset.',
55
  )
 
6
 
7
  #%%
8
  whisper = pipeline(model='jlvdoorn/whisper-large-v2-atco2-asr-atcosim', use_auth_token=os.environ['HUGGINGFACE_TOKEN'])
9
+ # bert_atco_ner = pipeline(model='Jzuluaga/bert-base-ner-atc-en-atco2-1h')
10
 
11
  #%%
12
  def transcribe(audio_mic, audio_file):
 
18
  return 'There was no audio to transcribe...'
19
 
20
  #%%
21
+ # def extractCallSignCommand(transcription):
22
+ # if type(transcription) is str:
23
+ # result = bert_atco_ner(transcription)
24
+ # callsigns = []
25
+ # commands = []
26
+ # values = []
27
+ # for item in result:
28
+ # if 'callsign' in item['entity']:
29
+ # callsigns.append(item['word'])
30
+ # if 'command' in item['entity']:
31
+ # commands.append(item['word'])
32
+ # if 'value' in item['entity']:
33
+ # values.append(item['word'])
34
 
35
+ # return 'Callsigns: ' + ', '.join(callsigns) + '\nCommands: ' + ', '.join(commands) + '\nValues: ' + ', '.join(values)
36
+ # else:
37
+ # return 'There was no transcription to extract a callsign or command from...'
38
 
39
  #%%
40
+ # def transcribeAndExtract(audio_mic, audio_file, transcribe_only):
41
+ # transcription = transcribe(audio_mic, audio_file)
42
+ # if not transcribe_only:
43
+ # callSignCommandValues = extractCallSignCommand(transcription)
44
+ # else:
45
+ # callSignCommandValues = ''
46
+ # return transcription, callSignCommandValues
47
 
48
  #%%
49
  iface = gr.Interface(
50
+ fn=transcribe,
51
+ inputs=[gr.Audio(source='microphone', type='filepath'), gr.Audio(source='upload', type='filepath')],
52
+ outputs=gr.Text(label='Transcription'),
53
  title='Whisper Large v2 - ATCO2-ASR-ATCOSIM',
54
  description='This demo will transcribe ATC audio files by using the Whisper Large v2 model fine-tuned on the ATCO2 and ATCOSIM datasets. Further it uses a Named Entity Recognition model to extract callsigns, commands and values from the transcription. This model is based on Google\'s BERT model and fine-tuned on the ATCO2 dataset.',
55
  )