#%% from huggingface_hub import login from transformers import pipeline from datasets import load_dataset import gradio as gr import os login(token=os.environ['hf_token']) atco2 = load_dataset('jlvdoorn/atco2-asr', split='validation') atcosim = load_dataset('jlvdoorn/atcosim', split='validation') examples = [atco2[0]['audio'], atcosim[0]['audio'], atco2[1]['audio'], atcosim[1]['audio'], atco2[2]['audio'], atcosim[2]['audio']] examples_labels = ['Example ' + str(i) for i in len(examples)] ## Try to load a local model if available # try: # whisper = pipeline(model='/mnt/projects/whisper/WhisperANSP/Models/whisper-large-v2-atco2-asr-atcosim-ANSP-3h1m', task='automatic-speech-recognition') # ttl = 'Whisper Large v2 - ATCO2-ATCOSIM-ANSP' # dis = 'This demo will transcribe ATC audio files by using the Whisper Large v2 model fine-tuned on the ATCO2, ATCOSIM and ANSP datasets. \n \n Further it uses a Named Entity Recognition model to extract callsigns, commands and values from the transcription. \n This model is based on Google\'s BERT model and fine-tuned on the ATCO2 dataset.' # except: # whisper = pipeline(model='jlvdoorn/whisper-large-v2-atco2-asr-atcosim') # ttl = 'Whisper Large v2 - ATCO2-ATCOSIM' # dis = 'This demo will transcribe ATC audio files by using the Whisper Large v2 model fine-tuned on the ATCO2 and ATCOSIM datasets. \n \n Further it uses a Named Entity Recognition model to extract callsigns, commands and values from the transcription. \n This model is based on Google\'s BERT model and fine-tuned on the ATCO2 dataset.' bert_atco_ner = pipeline(model='Jzuluaga/bert-base-ner-atc-en-atco2-1h') whisper_v2 = pipeline(model='jlvdoorn/whisper-large-v2-atco2-asr-atcosim') whisper_v3 = pipeline(model='jlvdoorn/whisper-large-v3-atco2-asr-atcosim') #%% def transcribe(audio_file, audio_mic, model_version): if model_version == 'large-v2': whisper = whisper_v2 ttl = 'Whisper Large v2 - ATCO2-ATCOSIM' dis = 'This demo will transcribe ATC audio files by using the Whisper Large v2 model fine-tuned on the ATCO2 and ATCOSIM datasets. \n \n Further it uses a Named Entity Recognition model to extract callsigns, commands and values from the transcription. \n This model is based on Google\'s BERT model and fine-tuned on the ATCO2 dataset.' elif model_version == 'large-v3': whisper = whisper_v3 ttl = 'Whisper Large v3 - ATCO2-ATCOSIM' dis = 'This demo will transcribe ATC audio files by using the Whisper Large v3 model fine-tuned on the ATCO2 and ATCOSIM datasets. \n \n Further it uses a Named Entity Recognition model to extract callsigns, commands and values from the transcription. \n This model is based on Google\'s BERT model and fine-tuned on the ATCO2 dataset.' if audio_mic is not None: return whisper(audio_mic)['text'] elif audio_file is not None: return whisper(audio_file)['text'] else: return 'There was no audio to transcribe...' #%% def extractCallSignCommand(transcription): if type(transcription) is str: result = bert_atco_ner(transcription) callsigns = [] commands = [] values = [] for item in result: if 'callsign' in item['entity']: callsigns.append(item['word']) if 'command' in item['entity']: commands.append(item['word']) if 'value' in item['entity']: values.append(item['word']) return 'Callsigns: ' + ', '.join(callsigns) + '\nCommands: ' + ', '.join(commands) + '\nValues: ' + ', '.join(values) else: return 'There was no transcription to extract a callsign or command from...' #%% def transcribeAndExtract(audio_file, audio_mic, transcribe_only, model_version): transcription = transcribe(audio_file, audio_mic, model_version) if not transcribe_only: callSignCommandValues = extractCallSignCommand(transcription) else: callSignCommandValues = '' return transcription, callSignCommandValues #%% iface = gr.Interface( fn=transcribeAndExtract, inputs=[ gr.Audio(source='upload', type='filepath', interactive=True), gr.Audio(source='microphone', type='filepath'), gr.Checkbox(label='Transcribe only', default=False), gr.Dropdown(choices=['large-v2', 'large-v3'], value='large-v3', label='Whisper model version'), ], outputs=[gr.Text(label='Transcription'), gr.Text(label='Callsigns, commands and values')], title='Whisper ATC - Large v3', description='Transcribe and extract', examples = examples, ) #%% #iface.launch(server_name='0.0.0.0', server_port=9000) iface.launch()