#%% from transformers import pipeline import gradio as gr import os #%% whisper = pipeline(model='jlvdoorn/whisper-large-v2-atco2-asr-atcosim', use_auth_token=os.environ['HUGGINGFACE_TOKEN']) # bert_atco_ner = pipeline(model='Jzuluaga/bert-base-ner-atc-en-atco2-1h') #%% def transcribe(audio_file): if audio_file is not None: return whisper(audio_file)['text'] else: return 'There was no audio to transcribe...' #%% # def extractCallSignCommand(transcription): # if type(transcription) is str: # result = bert_atco_ner(transcription) # callsigns = [] # commands = [] # values = [] # for item in result: # if 'callsign' in item['entity']: # callsigns.append(item['word']) # if 'command' in item['entity']: # commands.append(item['word']) # if 'value' in item['entity']: # values.append(item['word']) # return 'Callsigns: ' + ', '.join(callsigns) + '\nCommands: ' + ', '.join(commands) + '\nValues: ' + ', '.join(values) # else: # return 'There was no transcription to extract a callsign or command from...' #%% # def transcribeAndExtract(audio_mic, audio_file, transcribe_only): # transcription = transcribe(audio_mic, audio_file) # if not transcribe_only: # callSignCommandValues = extractCallSignCommand(transcription) # else: # callSignCommandValues = '' # return transcription, callSignCommandValues #%% iface = gr.Interface( fn=transcribe, inputs=gr.Audio(source='upload', type='filepath'), outputs=gr.Text(label='Transcription'), title='Whisper Large v2 - ATCO2-ASR-ATCOSIM', description='This demo will transcribe ATC audio files by using the Whisper Large v2 model fine-tuned on the ATCO2 and ATCOSIM datasets. Further it uses a Named Entity Recognition model to extract callsigns, commands and values from the transcription. This model is based on Google\'s BERT model and fine-tuned on the ATCO2 dataset.', ) #%% iface.launch()