#%% from transformers import pipeline import gradio as gr import os #%% whisper = pipeline(model='jlvdoorn/whisper-large-v2-atco2-asr-atcosim') bert_atco_ner = pipeline(model='Jzuluaga/bert-base-ner-atc-en-atco2-1h') #%% def transcribe(audio_file, audio_mic): if audio_mic is not None: return whisper(audio_mic)['text'] elif audio_file is not None: return whisper(audio_file)['text'] else: return 'There was no audio to transcribe...' #%% def extractCallSignCommand(transcription): if type(transcription) is str: result = bert_atco_ner(transcription) callsigns = [] commands = [] values = [] for item in result: if 'callsign' in item['entity']: callsigns.append(item['word']) if 'command' in item['entity']: commands.append(item['word']) if 'value' in item['entity']: values.append(item['word']) return 'Callsigns: ' + ', '.join(callsigns) + '\nCommands: ' + ', '.join(commands) + '\nValues: ' + ', '.join(values) else: return 'There was no transcription to extract a callsign or command from...' #%% def transcribeAndExtract(audio_mic, audio_file, transcribe_only): transcription = transcribe(audio_mic, audio_file) if not transcribe_only: callSignCommandValues = extractCallSignCommand(transcription) else: callSignCommandValues = '' return transcription, callSignCommandValues #%% iface = gr.Interface( fn=transcribeAndExtract, inputs=[gr.Audio(source='upload', type='filepath'), gr.Audio(source='microphone', type='filepath'), gr.Checkbox(label='Transcribe only', default=False)], outputs=[gr.Text(label='Transcription'), gr.Text(label='Callsigns, commands and values')], title='Whisper Large v2 - ATCO2-ASR-ATCOSIM', description='This demo will transcribe ATC audio files by using the Whisper Large v2 model fine-tuned on the ATCO2 and ATCOSIM datasets. Further it uses a Named Entity Recognition model to extract callsigns, commands and values from the transcription. This model is based on Google\'s BERT model and fine-tuned on the ATCO2 dataset.', ) #%% iface.launch()