jtmuller's picture
Update Space
00407e6
import sys
import onnxruntime as ort
import numpy as np
import string
# Transformers, HuggingFace Hub, and Gradio
from transformers import AutoTokenizer
import gradio as gr
from huggingface_hub import InferenceClient
# ------------------------------------------------
# Turn Detector Configuration
# ------------------------------------------------
HG_MODEL = "livekit/turn-detector" # or your HF model repo
ONNX_FILENAME = "model_quantized.onnx" # path to your ONNX file
MAX_HISTORY_TOKENS = 512
PUNCS = string.punctuation.replace("'", "")
# ------------------------------------------------
# Utility functions
# ------------------------------------------------
def softmax(logits: np.ndarray) -> np.ndarray:
exp_logits = np.exp(logits - np.max(logits))
return exp_logits / np.sum(exp_logits)
def normalize_text(text: str) -> str:
"""Lowercase, strip punctuation (except single quotes), and collapse whitespace."""
def strip_puncs(text_in):
return text_in.translate(str.maketrans("", "", PUNCS))
return " ".join(strip_puncs(text).lower().split())
def calculate_eou(chat_ctx, session, tokenizer) -> float:
"""
Given a conversation context (list of dicts with 'role' and 'content'),
returns the probability that the user is finished speaking.
"""
# Collect normalized messages from 'user' or 'assistant' roles
normalized_ctx = []
for msg in chat_ctx:
if msg["role"] in ("user", "assistant"):
content = normalize_text(msg["content"])
if content:
normalized_ctx.append(content)
# Join them into one input string
text = " ".join(normalized_ctx)
inputs = tokenizer(
text,
return_tensors="np",
truncation=True,
max_length=MAX_HISTORY_TOKENS,
)
input_ids = np.array(inputs["input_ids"], dtype=np.int64)
# Run inference
outputs = session.run(["logits"], {"input_ids": input_ids})
logits = outputs[0][0, -1, :]
# Softmax over logits
probs = softmax(logits)
# The ID for the <|im_end|> special token
eou_token_id = tokenizer.encode("<|im_end|>")[-1]
return probs[eou_token_id]
# ------------------------------------------------
# Load ONNX session & tokenizer once
# ------------------------------------------------
print("Loading ONNX model session...")
onnx_session = ort.InferenceSession(
ONNX_FILENAME, providers=["CPUExecutionProvider"])
print("Loading tokenizer...")
turn_detector_tokenizer = AutoTokenizer.from_pretrained(HG_MODEL)
# ------------------------------------------------
# HF InferenceClient for text generation (example)
# ------------------------------------------------
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Adjust above to any other endpoint that suits your use case.
# ------------------------------------------------
# Gradio Chat Handler
# ------------------------------------------------
def respond(message, history, system_message, max_tokens, temperature, top_p):
"""
This function is called on each new user message in the ChatInterface.
- 'message' is the new user input
- 'history' is a list of (user, assistant) tuples
- 'system_message' is from the system Textbox
- max_tokens, temperature, top_p come from the Sliders
"""
# 1) Build a list of messages in the OpenAI-style format:
# [{'role': 'system', 'content': ...},
# {'role': 'user', 'content': ...}, ...]
messages = [
{"role": "user",
"content": message}
]
if system_message.strip():
messages.insert(0, {"role": "system", "content": system_message})
# history is a list of tuples: [(user1, assistant1), (user2, assistant2), ...]
""" for user_text, assistant_text in history:
if user_text:
messages.append({"role": "user", "content": user_text})
if assistant_text:
messages.append({"role": "assistant", "content": assistant_text})
# Append the new user message
messages.append({"role": "user", "content": message}) """
# 2) Calculate EOU probability on the entire conversation
eou_prob = calculate_eou(messages, onnx_session, turn_detector_tokenizer)
# 3) Generate the assistant response from your HF model.
# (This code streams token-by-token.)
response = ""
yield f"[EOU Probability: {eou_prob:.4f}]"
# ------------------------------------------------
# Gradio ChatInterface
# ------------------------------------------------
"""
This ChatInterface will have:
- A chat box
- A system message textbox
- 3 sliders for max_tokens, temperature, and top_p
"""
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(
value="You are a friendly Chatbot.",
label="System message",
lines=2
),
gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max new tokens"
),
gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
),
],
)
if __name__ == "__main__":
demo.launch()