johannoriel commited on
Commit
2124a36
1 Parent(s): 999be0c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +70 -56
app.py CHANGED
@@ -1,63 +1,77 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
  ],
 
 
 
 
 
 
 
 
 
 
59
  )
60
 
61
-
62
  if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from transformers import AutoTokenizer, AutoModel
4
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
5
+ from langchain.embeddings import HuggingFaceEmbeddings
6
+ from langchain_community.embeddings import HuggingFaceEmbeddings
7
+ import fitz # PyMuPDF
8
 
9
+ # Function to get available models from Hugging Face
10
+ def get_hf_models():
11
+ return ["Qwen/Qwen2.5-3B-Instruct", "HuggingFaceH4/zephyr-7b-beta", "mistralai/Mistral-7B-Instruct-v0.1"]
12
+
13
+ # Function to extract text from a PDF
14
+ def extract_text_from_pdf(pdf_path):
15
+ text = ""
16
+ with fitz.open(pdf_path) as doc:
17
+ for page in doc:
18
+ text += page.get_text()
19
+ return text
20
+
21
+ # Function for manual RAG
22
+ def manual_rag(query, context, client):
23
+ prompt = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:"
24
+ response = client.text_generation(prompt, max_new_tokens=512)
25
+ return response
26
+
27
+ # Function for classic RAG
28
+ def classic_rag(query, pdf_path, client, embedder):
29
+ text = extract_text_from_pdf(pdf_path)
30
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
31
+ chunks = text_splitter.split_text(text)
32
+ embeddings = HuggingFaceEmbeddings(model_name=embedder)
33
+ db = FAISS.from_texts(chunks, embeddings)
34
+ docs = db.similarity_search(query, k=3)
35
+ context = " ".join([doc.page_content for doc in docs])
36
+ response = manual_rag(query, context, client)
37
+ return response, context
38
+
39
+ # Function for response without RAG
40
+ def no_rag(query, client):
41
+ response = client.text_generation(query, max_new_tokens=512)
42
+ return response
43
+
44
+ # Gradio interface function
45
+ def process_query(query, pdf_path, llm_choice, embedder_choice):
46
+ client = InferenceClient(llm_choice)
47
+ full_text = extract_text_from_pdf(pdf_path)
48
+ no_rag_response = no_rag(query, client)
49
+ manual_rag_response = manual_rag(query, full_text, client)
50
+ classic_rag_response, classic_rag_context = classic_rag(query, pdf_path, client, embedder_choice)
51
+ return no_rag_response, manual_rag_response, classic_rag_response, full_text, classic_rag_context
52
+
53
+ # Create Gradio interface
54
+ iface = gr.Interface(
55
+ fn=process_query,
56
+ inputs=[
57
+ gr.Textbox(label="Votre question"),
58
+ gr.File(label="Chargez votre PDF"),
59
+ gr.Dropdown(choices=get_hf_models(), label="Choisissez le LLM", value="Qwen/Qwen2.5-3B-Instruct"),
60
+ gr.Dropdown(choices=["sentence-transformers/all-MiniLM-L6-v2", "nomic-ai/nomic-embed-text-v1.5"],
61
+ label="Choisissez l'Embedder", value="sentence-transformers/all-MiniLM-L6-v2")
 
62
  ],
63
+ outputs=[
64
+ gr.Textbox(label="Réponse sans RAG"),
65
+ gr.Textbox(label="Réponse avec RAG manuel"),
66
+ gr.Textbox(label="Réponse avec RAG classique"),
67
+ gr.Textbox(label="Texte complet du PDF (pour RAG manuel)", lines=10),
68
+ gr.Textbox(label="Contexte extrait (pour RAG classique)", lines=10)
69
+ ],
70
+ title="Tutoriel RAG - Comparaison des méthodes",
71
+ description="Posez une question sur le contenu d'un PDF et comparez les réponses obtenues avec différentes méthodes de RAG.",
72
+ theme="default"
73
  )
74
 
75
+ # Launch the application
76
  if __name__ == "__main__":
77
+ iface.launch()