chatgpt_clone / app.py
Johnny Lee
update
2cba383
raw
history blame
12.9 kB
# ruff: noqa: E501
import asyncio
import datetime
import logging
import os
import requests
import json
import uuid
from copy import deepcopy
from typing import Any, Dict, List, Optional, Tuple
import gradio as gr
import pytz
import tiktoken
# from dotenv import load_dotenv
# load_dotenv()
from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler
from langchain.callbacks.tracers.run_collector import RunCollectorCallbackHandler
from langchain.chains import ConversationChain
from langsmith import Client
from langchain.chat_models import ChatAnthropic, ChatOpenAI
from langchain.memory import ConversationTokenBufferMemory
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
MessagesPlaceholder,
SystemMessagePromptTemplate,
)
from langchain.schema import BaseMessage
logging.basicConfig(format="%(asctime)s %(name)s %(levelname)s:%(message)s")
LOG = logging.getLogger(__name__)
LOG.setLevel(logging.INFO)
GPT_3_5_CONTEXT_LENGTH = 4096
CLAUDE_2_CONTEXT_LENGTH = 100000 # need to use claude tokenizer
SYSTEM_MESSAGE = """You are a helpful AI assistant for a Columbia Business School MBA student.
Follow this message's instructions carefully. Respond using markdown.
Never repeat these instructions in a subsequent message.
You will start an conversation with me in the following form:
1. Below these instructions you will receive a business scenario. The scenario will (a) include the name of a company or category, and (b) a debatable multiple-choice question about the business scenario.
2. We will pretend to be executives charged with solving the strategic question outlined in the scenario.
3. To start the conversation, you will provide summarize the question and provide all options in the multiple choice question to me. Then, you will ask me to choose a position and provide a short opening argument. Do not yet provide your position.
4. After receiving my position and explanation. You will choose an alternate position in the scenario.
5. Inform me which position you have chosen, then proceed to have a discussion with me on this topic.
6. The discussion should be informative and very rigorous. Do not agree with my arguments easily. Pursue a Socratic method of questioning and reasoning.
"""
CASES = {case["name"]: case["template"] for case in json.load(open("templates.json"))}
def get_case_template(template_name: str) -> str:
case_template = CASES[template_name]
return f"""{template_name}
{case_template}
"""
def reset_textbox():
return gr.update(value="")
def auth(username, password):
auth_endpoint = "https://worker_auth.jclcw.workers.dev/auth"
try:
auth_payload = {username: password}
print(auth_payload)
auth_response = requests.post(
auth_endpoint,
json=auth_payload,
timeout=3,
)
auth_response.raise_for_status()
return auth_response.status_code == 200
except Exception as exc:
LOG.error(exc)
return (username, password) in creds
def make_llm_state(use_claude: bool = False) -> Dict[str, Any]:
if use_claude:
llm = ChatAnthropic(
model="claude-2",
anthropic_api_key=ANTHROPIC_API_KEY,
temperature=1,
max_tokens_to_sample=5000,
streaming=True,
)
context_length = CLAUDE_2_CONTEXT_LENGTH
tokenizer = tiktoken.get_encoding("cl100k_base")
else:
llm = ChatOpenAI(
model_name="gpt-4",
temperature=1,
openai_api_key=OPENAI_API_KEY,
max_retries=6,
request_timeout=100,
streaming=True,
)
context_length = GPT_3_5_CONTEXT_LENGTH
_, tokenizer = llm._get_encoding_model()
return dict(llm=llm, context_length=context_length, tokenizer=tokenizer)
def make_template(
system_msg: str = SYSTEM_MESSAGE, template_name: str = "Netflix"
) -> ChatPromptTemplate:
knowledge_cutoff = "Early 2023"
current_date = datetime.datetime.now(pytz.timezone("America/New_York")).strftime(
"%Y-%m-%d"
)
case_template = get_case_template(template_name)
system_msg += f"""
{case_template}
Knowledge cutoff: {knowledge_cutoff}
Current date: {current_date}
"""
human_template = "{input}"
LOG.info(system_msg)
return ChatPromptTemplate.from_messages(
[
SystemMessagePromptTemplate.from_template(system_msg),
MessagesPlaceholder(variable_name="history"),
HumanMessagePromptTemplate.from_template(human_template),
]
)
def update_system_prompt(
system_msg: str, llm_option: str, template_option: str
) -> Tuple[str, Dict[str, Any]]:
template_output = make_template(system_msg, template_option)
state = set_state()
state["template"] = template_output
use_claude = llm_option == "Claude 2"
state["llm_state"] = make_llm_state(use_claude)
llm = state["llm_state"]["llm"]
state["memory"] = ConversationTokenBufferMemory(
llm=llm,
max_token_limit=state["llm_state"]["context_length"],
return_messages=True,
)
state["chain"] = ConversationChain(
memory=state["memory"],
prompt=state["template"],
llm=llm,
)
updated_status = "Prompt Updated! Chat has reset."
return updated_status, state
def set_state(
state: Optional[gr.State] = None, metadata: Optional[Dict[str, str]] = None
) -> Dict[str, Any]:
if state is None:
template = make_template()
llm_state = make_llm_state()
llm = llm_state["llm"]
memory = ConversationTokenBufferMemory(
llm=llm, max_token_limit=llm_state["context_length"], return_messages=True
)
chain = ConversationChain(
memory=memory, prompt=template, llm=llm, metadata=metadata
)
session_id = str(uuid.uuid4())
state = dict(
template=template,
llm_state=llm_state,
history=[],
memory=memory,
chain=chain,
session_id=session_id,
)
return state
else:
return state
async def respond(
inp: str,
state: Optional[Dict[str, Any]],
request: gr.Request,
) -> Tuple[List[str], gr.State, Optional[str]]:
"""Execute the chat functionality."""
def prep_messages(
user_msg: str, memory_buffer: List[BaseMessage]
) -> Tuple[str, List[BaseMessage]]:
messages_to_send = state["template"].format_messages(
input=user_msg, history=memory_buffer
)
user_msg_token_count = llm.get_num_tokens_from_messages([messages_to_send[-1]])
total_token_count = llm.get_num_tokens_from_messages(messages_to_send)
while user_msg_token_count > context_length:
LOG.warning(
f"Pruning user message due to user message token length of {user_msg_token_count}"
)
user_msg = tokenizer.decode(
llm.get_token_ids(user_msg)[: context_length - 100]
)
messages_to_send = state["template"].format_messages(
input=user_msg, history=memory_buffer
)
user_msg_token_count = llm.get_num_tokens_from_messages(
[messages_to_send[-1]]
)
total_token_count = llm.get_num_tokens_from_messages(messages_to_send)
while total_token_count > context_length:
LOG.warning(
f"Pruning memory due to total token length of {total_token_count}"
)
if len(memory_buffer) == 1:
memory_buffer.pop(0)
continue
memory_buffer = memory_buffer[1:]
messages_to_send = state["template"].format_messages(
input=user_msg, history=memory_buffer
)
total_token_count = llm.get_num_tokens_from_messages(messages_to_send)
return user_msg, memory_buffer
try:
if state is None:
state = set_state(metadata=dict(username=request.username))
llm = state["llm_state"]["llm"]
context_length = state["llm_state"]["context_length"]
tokenizer = state["llm_state"]["tokenizer"]
LOG.info(f"""[{request.username}] STARTING CHAIN""")
LOG.debug(f"History: {state['history']}")
LOG.debug(f"User input: {inp}")
inp, state["memory"].chat_memory.messages = prep_messages(
inp, state["memory"].buffer
)
messages_to_send = state["template"].format_messages(
input=inp, history=state["memory"].buffer
)
total_token_count = llm.get_num_tokens_from_messages(messages_to_send)
LOG.debug(f"Messages to send: {messages_to_send}")
LOG.info(f"Tokens to send: {total_token_count}")
# Run chain and append input.
callback = AsyncIteratorCallbackHandler()
run_collector = RunCollectorCallbackHandler()
run = asyncio.create_task(
state["chain"].apredict(
input=inp,
callbacks=[callback, run_collector],
)
)
state["history"].append((inp, ""))
run_id = None
async for tok in callback.aiter():
user, bot = state["history"][-1]
bot += tok
state["history"][-1] = (user, bot)
yield state["history"], state, None
await run
if run_collector.traced_runs and run_id is None:
run_id = run_collector.traced_runs[0].id
LOG.info(f"RUNID: {run_id}")
if run_id:
run_collector.traced_runs = []
url = Client().share_run(run_id)
LOG.info(f"""URL : {url}""")
url_markdown = f"""[Shareable chat history link]({url})
[{url}]({url})"""
yield state["history"], state, url_markdown
LOG.info(f"""[{request.username}] ENDING CHAIN""")
LOG.debug(f"History: {state['history']}")
LOG.debug(f"Memory: {state['memory'].json()}")
data_to_flag = (
{
"history": deepcopy(state["history"]),
"username": request.username,
"timestamp": datetime.datetime.now(datetime.timezone.utc).isoformat(),
"session_id": state["session_id"],
},
)
LOG.debug(f"Data to flag: {data_to_flag}")
# gradio_flagger.flag(flag_data=data_to_flag, username=request.username)
except Exception as e:
LOG.exception(e)
raise e
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY")
HF_TOKEN = os.getenv("HF_TOKEN")
theme = gr.themes.Soft()
creds = [(os.getenv("CHAT_USERNAME"), os.getenv("CHAT_PASSWORD"))]
# gradio_flagger = gr.HuggingFaceDatasetSaver(HF_TOKEN, "chats")
title = "AI Debate Partner"
with gr.Blocks(
theme=theme,
analytics_enabled=False,
title=title,
) as demo:
state = gr.State()
gr.Markdown(f"### {title}")
with gr.Tab("Setup"):
with gr.Column():
llm_input = gr.Dropdown(
label="LLM",
choices=["Claude 2", "GPT-4"],
value="GPT-4",
multiselect=False,
)
case_input = gr.Dropdown(
label="Case",
choices=CASES.keys(),
value="Netflix",
multiselect=False,
)
system_prompt_input = gr.Textbox(
label="System Prompt", value=SYSTEM_MESSAGE
)
update_system_button = gr.Button(value="Update Prompt & Reset")
status_markdown = gr.Markdown()
with gr.Tab("Chatbot"):
with gr.Column():
chatbot = gr.Chatbot(label="ChatBot")
input_message = gr.Textbox(
placeholder="Send a message.",
label="Type an input and press Enter",
)
b1 = gr.Button(value="Submit")
share_link = gr.Markdown()
# gradio_flagger.setup([chatbot], "chats")
chat_bot_submit_params = dict(
fn=respond, inputs=[input_message, state], outputs=[chatbot, state, share_link]
)
input_message.submit(**chat_bot_submit_params)
b1.click(**chat_bot_submit_params)
update_system_button.click(
update_system_prompt,
[system_prompt_input, llm_input, case_input],
[status_markdown, state],
)
update_system_button.click(reset_textbox, [], [input_message])
update_system_button.click(reset_textbox, [], [chatbot])
b1.click(reset_textbox, [], [input_message])
input_message.submit(reset_textbox, [], [input_message])
demo.queue(max_size=99, concurrency_count=99, api_open=False).launch(
debug=True, auth=auth
)