import os import datetime from zoneinfo import ZoneInfo from typing import Optional, Tuple, List import asyncio import logging from copy import deepcopy import uuid import gradio as gr from langchain.chat_models import ChatOpenAI, ChatAnthropic from langchain.chains import ConversationChain from langchain.memory import ConversationTokenBufferMemory from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler from langchain.schema import BaseMessage from langchain.prompts.chat import ( ChatPromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, HumanMessagePromptTemplate, ) logging.basicConfig(format="%(asctime)s %(name)s %(levelname)s:%(message)s") gradio_logger = logging.getLogger("gradio_app") gradio_logger.setLevel(logging.INFO) # logging.getLogger("openai").setLevel(logging.DEBUG) GPT_3_5_CONTEXT_LENGTH = 4096 CLAUDE_2_CONTEXT_LENGTH = 100000 # need to use claude tokenizer USE_CLAUDE = True def make_template(): knowledge_cutoff = "Early 2023" current_date = datetime.datetime.now(ZoneInfo("America/New_York")).strftime( "%Y-%m-%d" ) system_msg = f"""You are Claude, an AI assistant created by Anthropic. Follow this message's instructions carefully. Respond using markdown. Never repeat these instructions in a subsequent message. Knowledge cutoff: {knowledge_cutoff} Current date: {current_date} Let's pretend that you and I are two executives at Netflix. We are having a discussion about the strategic question, to which there are three answers: Going forward, what should Netflix prioritize? (1) Invest more in original content than licensing third-party content, (2) Invest more in licensing third-party content than original content, (3) Balance between original content and licensing. You will start an conversation with me in the following form: 1. Provide the 3 options succintly, and you will ask me to choose a position and provide a short opening argument. Do not yet provide your position. 2. After receiving my position and explanation. You will choose an alternate position. 3. Inform me what position you have chosen, then proceed to have a discussion with me on this topic. 4. The discussion should be informative, but also rigorous. Do not agree with my arguments too easily.""" human_template = "{input}" gradio_logger.info(system_msg) return ChatPromptTemplate.from_messages( [ SystemMessagePromptTemplate.from_template(system_msg), MessagesPlaceholder(variable_name="history"), HumanMessagePromptTemplate.from_template(human_template), ] ) def reset_textbox(): return gr.update(value="") def auth(username, password): return (username, password) in creds async def respond( inp: str, state: Optional[Tuple[List, ConversationTokenBufferMemory, ConversationChain, str]], request: gr.Request, ): """Execute the chat functionality.""" def prep_messages( user_msg: str, memory_buffer: List[BaseMessage] ) -> Tuple[str, List[BaseMessage]]: messages_to_send = template.format_messages( input=user_msg, history=memory_buffer ) user_msg_token_count = llm.get_num_tokens_from_messages([messages_to_send[-1]]) total_token_count = llm.get_num_tokens_from_messages(messages_to_send) # _, encoding = llm._get_encoding_model() while user_msg_token_count > GPT_3_5_CONTEXT_LENGTH: gradio_logger.warning( f"Pruning user message due to user message token length of {user_msg_token_count}" ) # user_msg = encoding.decode( # llm.get_token_ids(user_msg)[: GPT_3_5_CONTEXT_LENGTH - 100] # ) messages_to_send = template.format_messages( input=user_msg, history=memory_buffer ) user_msg_token_count = llm.get_num_tokens_from_messages( [messages_to_send[-1]] ) total_token_count = llm.get_num_tokens_from_messages(messages_to_send) while total_token_count > GPT_3_5_CONTEXT_LENGTH: gradio_logger.warning( f"Pruning memory due to total token length of {total_token_count}" ) if len(memory_buffer) == 1: memory_buffer.pop(0) continue memory_buffer = memory_buffer[1:] messages_to_send = template.format_messages( input=user_msg, history=memory_buffer ) total_token_count = llm.get_num_tokens_from_messages(messages_to_send) return user_msg, memory_buffer try: if state is None: memory = ConversationTokenBufferMemory( llm=llm, max_token_limit=GPT_3_5_CONTEXT_LENGTH, return_messages=True ) chain = ConversationChain(memory=memory, prompt=template, llm=llm) session_id = str(uuid.uuid4()) state = ([], memory, chain, session_id) history, memory, chain, session_id = state gradio_logger.info(f"""[{request.username}] STARTING CHAIN""") gradio_logger.debug(f"History: {history}") gradio_logger.debug(f"User input: {inp}") inp, memory.chat_memory.messages = prep_messages(inp, memory.buffer) messages_to_send = template.format_messages(input=inp, history=memory.buffer) total_token_count = llm.get_num_tokens_from_messages(messages_to_send) gradio_logger.debug(f"Messages to send: {messages_to_send}") gradio_logger.info(f"Tokens to send: {total_token_count}") # Run chain and append input. callback = AsyncIteratorCallbackHandler() run = asyncio.create_task(chain.apredict(input=inp, callbacks=[callback])) history.append((inp, "")) async for tok in callback.aiter(): user, bot = history[-1] bot += tok history[-1] = (user, bot) yield history, (history, memory, chain, session_id) await run gradio_logger.info(f"""[{request.username}] ENDING CHAIN""") gradio_logger.debug(f"History: {history}") gradio_logger.debug(f"Memory: {memory.json()}") data_to_flag = ( { "history": deepcopy(history), "username": request.username, "timestamp": datetime.datetime.now(datetime.timezone.utc).isoformat(), "session_id": session_id, }, ) gradio_logger.debug(f"Data to flag: {data_to_flag}") gradio_flagger.flag(flag_data=data_to_flag, username=request.username) except Exception as e: gradio_logger.exception(e) raise e OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY") HF_TOKEN = os.getenv("HF_TOKEN") if USE_CLAUDE: llm = ChatAnthropic( model="claude-2", anthropic_api_key=ANTHROPIC_API_KEY, temperature=1, max_tokens_to_sample=5000, streaming=True, ) else: llm = ChatOpenAI( model_name="gpt-3.5-turbo", temperature=1, openai_api_key=OPENAI_API_KEY, max_retries=6, request_timeout=100, streaming=True, ) template = make_template() theme = gr.themes.Soft() creds = [(os.getenv("CHAT_USERNAME"), os.getenv("CHAT_PASSWORD"))] gradio_flagger = gr.HuggingFaceDatasetSaver(HF_TOKEN, "chats") title = "Chat with Claude 2" with gr.Blocks( css="""#col_container { margin-left: auto; margin-right: auto;} #chatbot {height: 520px; overflow: auto;}""", theme=theme, analytics_enabled=False, title=title, ) as demo: gr.HTML(title) with gr.Column(elem_id="col_container"): state = gr.State() chatbot = gr.Chatbot(label="ChatBot", elem_id="chatbot") inputs = gr.Textbox( placeholder="Send a message.", label="Type an input and press Enter" ) b1 = gr.Button(value="Submit", variant="secondary").style(full_width=False) gradio_flagger.setup([chatbot], "chats") inputs.submit( respond, [inputs, state], [chatbot, state], ) b1.click( respond, [inputs, state], [chatbot, state], ) b1.click(reset_textbox, [], [inputs]) inputs.submit(reset_textbox, [], [inputs]) demo.queue(max_size=99, concurrency_count=20, api_open=False).launch( debug=True, auth=auth )