johnowhitaker's picture
Add device check
a81b4f4
raw
history blame
3.07 kB
import gradio as gr
import torch, torchvision
import torch.nn.functional as F
import numpy as np
from PIL import Image, ImageColor
from diffusers import DDPMPipeline
from diffusers import DDIMScheduler
device = 'mps' if torch.backends.mps.is_available() else 'cuda' if torch.cuda.is_available() else 'cpu'
# Load the pretrained pipeline
pipeline_name = 'johnowhitaker/sd-class-wikiart-from-bedrooms'
image_pipe = DDPMPipeline.from_pretrained(pipeline_name).to(device)
# Set up the scheduler
scheduler = DDIMScheduler.from_pretrained(pipeline_name)
scheduler.set_timesteps(num_inference_steps=40)
def color_loss(images, target_color=(0.1, 0.9, 0.5)):
"""Given a target color (R, G, B) return a loss for how far away on average
the images' pixels are from that color. Defaults to a light teal: (0.1, 0.9, 0.5) """
target = torch.tensor(target_color).to(images.device) * 2 - 1 # Map target color to (-1, 1)
target = target[None, :, None, None] # Get shape right to work with the images (b, c, h, w)
error = torch.abs(images - target).mean() # Mean absolute difference between the image pixels and the target color
return error
def generate(color, guidance_loss_scale):
# Target color as RGB
target_color = ImageColor.getcolor(color, "RGB")
# Initial random x - just one image but you could add a 'num_images' argument/input to give the user control
x = torch.randn(1, 3, 256, 256).to(device)
# Our custom sampling loop:
for i, t in tqdm(enumerate(scheduler.timesteps)):
# Prep the model input
model_input = scheduler.scale_model_input(x, t)
# predict the noise residual
with torch.no_grad():
noise_pred = image_pipe.unet(model_input, t)["sample"]
# Set requires grad on x (shortcut method - we're doing this AFTER the unet)
x = x.detach().requires_grad_()
# Get the predicted x0:
x0 = scheduler.step(noise_pred, t, x).pred_original_sample
# Calculate loss
loss = color_loss(x0, target_color) * guidance_loss_scale
# Get gradient
cond_grad = -torch.autograd.grad(loss, x)[0]
# Modify x based on this gradient
x = x.detach() + cond_grad
# Now step with scheduler
x = scheduler.step(noise_pred, t, x).prev_sample
# Return the final output as an image (or image grid if there are more than one images)
grid = torchvision.utils.make_grid(x, nrow=4)
im = grid.permute(1, 2, 0).cpu().clip(-1, 1)*0.5 + 0.5
return Image.fromarray(np.array(im*255).astype(np.uint8))
inputs = [
gr.ColorPicker(label="color", value='55FFAA'), # Add any inputs you need here
gr.Slider(label="guidance_scale", minimum=1, maximum=100, value=30)
]
outputs = gr.Image(label="result")
demo = gr.Interface(
fn=generate,
inputs=inputs,
outputs=outputs,
examples=[
["#BB2266"], # You can provide some example inputs to get people started
],
)
if __name__ == "__main__":
demo.launch()