File size: 3,759 Bytes
53420a8
ec80d0f
 
53420a8
ec80d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
53420a8
1205af7
 
 
53420a8
 
 
 
 
 
 
 
 
 
 
 
 
 
1205af7
53420a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec80d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53420a8
ec80d0f
 
 
 
 
 
16e4257
 
 
53420a8
 
1205af7
53420a8
 
 
 
 
 
 
 
47994fa
ec80d0f
53420a8
61dfb1b
53420a8
5b63955
53420a8
47994fa
ec80d0f
16e4257
47994fa
ec80d0f
47994fa
53420a8
ec80d0f
 
 
47994fa
 
5b63955
47994fa
53420a8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import gradio as gr
import numpy as np
import cv2
from fastapi import FastAPI, Request, Response
from src.body import Body

body_estimation = Body('model/body_pose_model.pth')

def pil2cv(image):
    ''' PIL型 -> OpenCV型 '''
    new_image = np.array(image, dtype=np.uint8)
    if new_image.ndim == 2:  # モノクロ
        pass
    elif new_image.shape[2] == 3:  # カラー
        new_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
    elif new_image.shape[2] == 4:  # 透過
        new_image = cv2.cvtColor(new_image, cv2.COLOR_RGBA2BGRA)
    return new_image

with open("static/poseEditor.js", "r") as f:
    file_contents = f.read()

app = FastAPI()

@app.middleware("http")
async def some_fastapi_middleware(request: Request, call_next):
    path = request.scope['path']  # get the request route
    response = await call_next(request)
    
    if path == "/":
        response_body = ""
        async for chunk in response.body_iterator:
            response_body += chunk.decode()

        some_javascript = f"""

        <script type="text/javascript" defer>

{file_contents}

        </script>

        """

        response_body = response_body.replace("</body>", some_javascript + "</body>")

        del response.headers["content-length"]

        return Response(
            content=response_body,
            status_code=response.status_code, 
            headers=dict(response.headers),
            media_type=response.media_type
        )

    return response

# make cndidate to json
def candidate_to_json_string(arr):
    a = [f'[{x:.2f}, {y:.2f}]' for x, y, *_ in arr]
    return '[' + ', '.join(a) + ']'

# make subset to json
def subset_to_json_string(arr):
    arr_str = ','.join(['[' + ','.join([f'{num:.2f}' for num in row]) + ']' for row in arr])
    return '[' + arr_str + ']'

def estimate_body(source):
    print("estimate_body")
    if source == None:
      return None

    candidate, subset = body_estimation(pil2cv(source))
    print(candidate_to_json_string(candidate))
    print(subset_to_json_string(subset))
    return "{ \"candidate\": " + candidate_to_json_string(candidate) + ", \"subset\": " + subset_to_json_string(subset) + " }"
    
def image_changed(image):
  if (image == None):
    return None
  json = estimate_body(image)
  return json, image.width, image.height

def image_preprocess(image):
  return image is not None

html_text = f"""

    <canvas id="canvas" width="512" height="512"></canvas>

    <script type="text/javascript" defer>{file_contents}</script>

    """

with gr.Blocks() as demo:
  with gr.Row():
    with gr.Column(scale=1):
      source = gr.Image(type="pil")
      width = gr.Slider(label="Width", mininmum=512, maximum=1024, step=64, value=512, key="Width", interactive=True)
      height = gr.Slider(label="Height", mininmum=512, maximum=1024, step=64, value=512, key="Height", interactive=True)
      startBtn = gr.Button(value="Start edit")
      json = gr.JSON(label="Body")
    with gr.Column(scale=2):
      gr.HTML("<ul><li>ctrl + drag to scale</li><li>alt + drag to translate</li><li>shift + drag to rotate(move right first, then up or down)</li></ul>")
      html = gr.HTML(html_text)
      saveBtn = gr.Button(value="Save")

  source.change(
    fn = image_changed,
    preprocess = image_preprocess,
    inputs = [source],
    outputs = [json, width, height])
  startBtn.click(
    fn = None,
    inputs = [json, width, height], 
    outputs = [],
    _js="(json, w, h) => { initializePose(json,w,h); return []; }")
  saveBtn.click(
    fn = None,
    inputs = [], outputs = [],
    _js="() => { savePose(); }")

gr.mount_gradio_app(app, demo, path="/")