File size: 4,647 Bytes
53420a8
ec80d0f
 
53420a8
ec80d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
53420a8
1205af7
 
 
53420a8
 
 
 
 
 
 
 
 
 
 
 
 
 
1205af7
53420a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec80d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53420a8
ec80d0f
 
16a0676
ec80d0f
 
 
53420a8
 
1205af7
53420a8
 
 
16a0676
 
 
 
 
 
 
 
 
 
 
 
 
53420a8
 
 
 
 
47994fa
16a0676
 
 
53420a8
 
5b63955
29f5951
 
 
 
 
 
 
53420a8
47994fa
ec80d0f
47994fa
ec80d0f
47994fa
53420a8
ec80d0f
 
 
47994fa
 
901df68
 
16a0676
 
 
 
53420a8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import gradio as gr
import numpy as np
import cv2
from fastapi import FastAPI, Request, Response
from src.body import Body

body_estimation = Body('model/body_pose_model.pth')

def pil2cv(image):
    ''' PIL型 -> OpenCV型 '''
    new_image = np.array(image, dtype=np.uint8)
    if new_image.ndim == 2:  # モノクロ
        pass
    elif new_image.shape[2] == 3:  # カラー
        new_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
    elif new_image.shape[2] == 4:  # 透過
        new_image = cv2.cvtColor(new_image, cv2.COLOR_RGBA2BGRA)
    return new_image

with open("static/poseEditor.js", "r") as f:
    file_contents = f.read()

app = FastAPI()

@app.middleware("http")
async def some_fastapi_middleware(request: Request, call_next):
    path = request.scope['path']  # get the request route
    response = await call_next(request)
    
    if path == "/":
        response_body = ""
        async for chunk in response.body_iterator:
            response_body += chunk.decode()

        some_javascript = f"""

        <script type="text/javascript" defer>

{file_contents}

        </script>

        """

        response_body = response_body.replace("</body>", some_javascript + "</body>")

        del response.headers["content-length"]

        return Response(
            content=response_body,
            status_code=response.status_code, 
            headers=dict(response.headers),
            media_type=response.media_type
        )

    return response

# make cndidate to json
def candidate_to_json_string(arr):
    a = [f'[{x:.2f}, {y:.2f}]' for x, y, *_ in arr]
    return '[' + ', '.join(a) + ']'

# make subset to json
def subset_to_json_string(arr):
    arr_str = ','.join(['[' + ','.join([f'{num:.2f}' for num in row]) + ']' for row in arr])
    return '[' + arr_str + ']'

def estimate_body(source):
    if source == None:
      return None

    candidate, subset = body_estimation(pil2cv(source))
    return "{ \"candidate\": " + candidate_to_json_string(candidate) + ", \"subset\": " + subset_to_json_string(subset) + " }"
    
def image_changed(image):
  if (image == None):
    return {}, 512, 512
  json = estimate_body(image)
  return json, image.width, image.height

html_text = f"""

    <canvas id="canvas" width="512" height="512"></canvas>

    <script type="text/javascript" defer>{file_contents}</script>

    """

with gr.Blocks() as demo:
  gr.Markdown("""### Usage



Choose one of the following methods to edit the pose:



| Style            | Description                                                                               |

| -----------------| ----------------------------------------------------------------------------------------- |

| Pose recognition | Upload an image and click "Start edit".                                               |

| Input json       | Input json to "Json source" and click "Input Json", edit the width/height, then click "Start edit".    |

| Free style       | Edit the width/height, then click "Start edit".                                        |



To save the pose image, click "Save".  

To export the pose data, click "Save" and "Copy to clipboard" of "Json" section.

""")
  with gr.Row():
    with gr.Column(scale=1):
      source = gr.Image(type="pil")
      width = gr.Slider(label="Width", mininmum=512, maximum=1024, step=64, value=512, key="Width", interactive=True)
      height = gr.Slider(label="Height", mininmum=512, maximum=1024, step=64, value=512, key="Height", interactive=True)
      startBtn = gr.Button(value="Start edit")
      json = gr.JSON(label="Json", lines=10)
      jsonInput = gr.Textbox(label="Json source", lines=10)
      jsonInputBtn = gr.Button(value="Input Json")
    with gr.Column(scale=2):
      html = gr.HTML(html_text)
      saveBtn = gr.Button(value="Save")
      gr.Markdown("""

- "ctrl + drag" to scale

- "alt + drag" to translate

- "shift + drag" to rotate(move right first, then up or down)

- "space + drag" to move within range

- "[", "]" to shrink or expand range

""")

  source.change(
    fn = image_changed,
    inputs = [source],
    outputs = [json, width, height])
  startBtn.click(
    fn = None,
    inputs = [json, width, height], 
    outputs = [],
    _js="(json, w, h) => { initializePose(json,w,h); return []; }")
  saveBtn.click(
    fn = None,
    inputs = [], outputs = [json],
    _js="() => { return [savePose()]; }")
  jsonInputBtn.click(
    fn = lambda x: x,
    inputs = [jsonInput], outputs = [json])
    
gr.mount_gradio_app(app, demo, path="/")