PoseMaker / app.py
jonigata's picture
add range move
29f5951
raw
history blame
4.65 kB
import gradio as gr
import numpy as np
import cv2
from fastapi import FastAPI, Request, Response
from src.body import Body
body_estimation = Body('model/body_pose_model.pth')
def pil2cv(image):
''' PIL型 -> OpenCV型 '''
new_image = np.array(image, dtype=np.uint8)
if new_image.ndim == 2: # モノクロ
pass
elif new_image.shape[2] == 3: # カラー
new_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
elif new_image.shape[2] == 4: # 透過
new_image = cv2.cvtColor(new_image, cv2.COLOR_RGBA2BGRA)
return new_image
with open("static/poseEditor.js", "r") as f:
file_contents = f.read()
app = FastAPI()
@app.middleware("http")
async def some_fastapi_middleware(request: Request, call_next):
path = request.scope['path'] # get the request route
response = await call_next(request)
if path == "/":
response_body = ""
async for chunk in response.body_iterator:
response_body += chunk.decode()
some_javascript = f"""
<script type="text/javascript" defer>
{file_contents}
</script>
"""
response_body = response_body.replace("</body>", some_javascript + "</body>")
del response.headers["content-length"]
return Response(
content=response_body,
status_code=response.status_code,
headers=dict(response.headers),
media_type=response.media_type
)
return response
# make cndidate to json
def candidate_to_json_string(arr):
a = [f'[{x:.2f}, {y:.2f}]' for x, y, *_ in arr]
return '[' + ', '.join(a) + ']'
# make subset to json
def subset_to_json_string(arr):
arr_str = ','.join(['[' + ','.join([f'{num:.2f}' for num in row]) + ']' for row in arr])
return '[' + arr_str + ']'
def estimate_body(source):
if source == None:
return None
candidate, subset = body_estimation(pil2cv(source))
return "{ \"candidate\": " + candidate_to_json_string(candidate) + ", \"subset\": " + subset_to_json_string(subset) + " }"
def image_changed(image):
if (image == None):
return {}, 512, 512
json = estimate_body(image)
return json, image.width, image.height
html_text = f"""
<canvas id="canvas" width="512" height="512"></canvas>
<script type="text/javascript" defer>{file_contents}</script>
"""
with gr.Blocks() as demo:
gr.Markdown("""### Usage
Choose one of the following methods to edit the pose:
| Style | Description |
| -----------------| ----------------------------------------------------------------------------------------- |
| Pose recognition | Upload an image and click "Start edit". |
| Input json | Input json to "Json source" and click "Input Json", edit the width/height, then click "Start edit". |
| Free style | Edit the width/height, then click "Start edit". |
To save the pose image, click "Save".
To export the pose data, click "Save" and "Copy to clipboard" of "Json" section.
""")
with gr.Row():
with gr.Column(scale=1):
source = gr.Image(type="pil")
width = gr.Slider(label="Width", mininmum=512, maximum=1024, step=64, value=512, key="Width", interactive=True)
height = gr.Slider(label="Height", mininmum=512, maximum=1024, step=64, value=512, key="Height", interactive=True)
startBtn = gr.Button(value="Start edit")
json = gr.JSON(label="Json", lines=10)
jsonInput = gr.Textbox(label="Json source", lines=10)
jsonInputBtn = gr.Button(value="Input Json")
with gr.Column(scale=2):
html = gr.HTML(html_text)
saveBtn = gr.Button(value="Save")
gr.Markdown("""
- "ctrl + drag" to scale
- "alt + drag" to translate
- "shift + drag" to rotate(move right first, then up or down)
- "space + drag" to move within range
- "[", "]" to shrink or expand range
""")
source.change(
fn = image_changed,
inputs = [source],
outputs = [json, width, height])
startBtn.click(
fn = None,
inputs = [json, width, height],
outputs = [],
_js="(json, w, h) => { initializePose(json,w,h); return []; }")
saveBtn.click(
fn = None,
inputs = [], outputs = [json],
_js="() => { return [savePose()]; }")
jsonInputBtn.click(
fn = lambda x: x,
inputs = [jsonInput], outputs = [json])
gr.mount_gradio_app(app, demo, path="/")