merge origin
Browse files- .gitignore +160 -0
- LICENSE +201 -0
- README.md +26 -1
- app.py +92 -0
- controlnet/lineart/__put_your_lineart_model +0 -0
- convertor.py +102 -0
- output/output.txt +0 -0
- requirements.txt +11 -0
- sd_model.py +64 -0
- starline.py +268 -0
- utils.py +53 -0
.gitignore
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
CHANGED
@@ -9,4 +9,29 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# starline
|
13 |
+
**St**rict coloring m**a**chine fo**r** **line** drawings.
|
14 |
+
|
15 |
+
|
16 |
+
![image](https://github.com/mattyamonaca/starline/assets/48423148/eae07a6e-9c7b-4292-8c70-dac8ec8eeb7b)
|
17 |
+
|
18 |
+
|
19 |
+
https://github.com/mattyamonaca/starline/assets/48423148/8199c65c-a19f-42e9-aab7-df5ed6ef5b4c
|
20 |
+
|
21 |
+
|
22 |
+
# Usage
|
23 |
+
- ```python app.py```
|
24 |
+
- Input the line drawing you wish to color (The background should be transparent).
|
25 |
+
- Input a prompt describing the color you want to add.
|
26 |
+
|
27 |
+
- 背景を透過した状態で線画を入力します
|
28 |
+
- 付けたい色を説明するプロンプトを入力します
|
29 |
+
|
30 |
+
# Precautions
|
31 |
+
- Image size 1024 x 1024 is recommended.
|
32 |
+
- Aliasing is a beta version.
|
33 |
+
- Areas finely surrounded by line drawings cannot be colored.
|
34 |
+
|
35 |
+
- 画像サイズは1024×1024を推奨します
|
36 |
+
- エイリアス処理はβ版です。より線画に忠実であることを求める場合は2値線画を推奨します
|
37 |
+
- 線画で細かく囲まれた部分は着色できません。着色できない部分は透過した状態で出力されます。
|
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import sys
|
3 |
+
from starline import process
|
4 |
+
|
5 |
+
from utils import load_cn_model, load_cn_config, randomname
|
6 |
+
from convertor import pil2cv, cv2pil
|
7 |
+
|
8 |
+
from sd_model import get_cn_pipeline, generate, get_cn_detector
|
9 |
+
import cv2
|
10 |
+
import os
|
11 |
+
import numpy as np
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
|
15 |
+
path = os.getcwd()
|
16 |
+
output_dir = f"{path}/output"
|
17 |
+
input_dir = f"{path}/input"
|
18 |
+
cn_lineart_dir = f"{path}/controlnet/lineart"
|
19 |
+
|
20 |
+
load_cn_model(cn_lineart_dir)
|
21 |
+
load_cn_config(cn_lineart_dir)
|
22 |
+
|
23 |
+
class webui:
|
24 |
+
def __init__(self):
|
25 |
+
self.demo = gr.Blocks()
|
26 |
+
|
27 |
+
def undercoat(self, input_image, pos_prompt, neg_prompt, alpha_th):
|
28 |
+
org_line_image = input_image
|
29 |
+
image = pil2cv(input_image)
|
30 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA)
|
31 |
+
|
32 |
+
index = np.where(image[:, :, 3] == 0)
|
33 |
+
image[index] = [255, 255, 255, 255]
|
34 |
+
input_image = cv2pil(image)
|
35 |
+
|
36 |
+
pipe = get_cn_pipeline()
|
37 |
+
detectors = get_cn_detector(input_image.resize((1024, 1024), Image.ANTIALIAS))
|
38 |
+
|
39 |
+
|
40 |
+
gen_image = generate(pipe, detectors, pos_prompt, neg_prompt)
|
41 |
+
output = process(gen_image.resize((image.shape[1], image.shape[0]), Image.ANTIALIAS) , org_line_image, alpha_th)
|
42 |
+
|
43 |
+
output = output.resize((image.shape[1], image.shape[0]) , Image.ANTIALIAS)
|
44 |
+
|
45 |
+
|
46 |
+
output = Image.alpha_composite(output, org_line_image)
|
47 |
+
name = randomname(10)
|
48 |
+
output.save(f"{output_dir}/output_{name}.png")
|
49 |
+
#output = pil2cv(output)
|
50 |
+
file_name = f"{output_dir}/output_{name}.png"
|
51 |
+
|
52 |
+
return output, file_name
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
def launch(self, share):
|
57 |
+
with self.demo:
|
58 |
+
with gr.Row():
|
59 |
+
with gr.Column():
|
60 |
+
input_image = gr.Image(type="pil", image_mode="RGBA")
|
61 |
+
|
62 |
+
pos_prompt = gr.Textbox(max_lines=1000, label="positive prompt")
|
63 |
+
neg_prompt = gr.Textbox(max_lines=1000, label="negative prompt")
|
64 |
+
|
65 |
+
alpha_th = gr.Slider(maximum = 255, value=100, label = "alpha threshold")
|
66 |
+
|
67 |
+
submit = gr.Button(value="Start")
|
68 |
+
with gr.Row():
|
69 |
+
with gr.Column():
|
70 |
+
with gr.Tab("output"):
|
71 |
+
output_0 = gr.Image()
|
72 |
+
|
73 |
+
output_file = gr.File()
|
74 |
+
submit.click(
|
75 |
+
self.undercoat,
|
76 |
+
inputs=[input_image, pos_prompt, neg_prompt, alpha_th],
|
77 |
+
outputs=[output_0, output_file]
|
78 |
+
)
|
79 |
+
|
80 |
+
self.demo.queue()
|
81 |
+
self.demo.launch(share=share)
|
82 |
+
|
83 |
+
|
84 |
+
if __name__ == "__main__":
|
85 |
+
ui = webui()
|
86 |
+
if len(sys.argv) > 1:
|
87 |
+
if sys.argv[1] == "share":
|
88 |
+
ui.launch(share=True)
|
89 |
+
else:
|
90 |
+
ui.launch(share=False)
|
91 |
+
else:
|
92 |
+
ui.launch(share=False)
|
controlnet/lineart/__put_your_lineart_model
ADDED
File without changes
|
convertor.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from skimage import color
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
|
7 |
+
def skimage_rgb2lab(rgb):
|
8 |
+
return color.rgb2lab(rgb.reshape(1,1,3))
|
9 |
+
|
10 |
+
|
11 |
+
def rgb2df(img):
|
12 |
+
h, w, _ = img.shape
|
13 |
+
x_l, y_l = np.meshgrid(np.arange(h), np.arange(w), indexing='ij')
|
14 |
+
r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]
|
15 |
+
df = pd.DataFrame({
|
16 |
+
"x_l": x_l.ravel(),
|
17 |
+
"y_l": y_l.ravel(),
|
18 |
+
"r": r.ravel(),
|
19 |
+
"g": g.ravel(),
|
20 |
+
"b": b.ravel(),
|
21 |
+
})
|
22 |
+
return df
|
23 |
+
|
24 |
+
def mask2df(mask):
|
25 |
+
h, w = mask.shape
|
26 |
+
x_l, y_l = np.meshgrid(np.arange(h), np.arange(w), indexing='ij')
|
27 |
+
flg = mask.astype(int)
|
28 |
+
df = pd.DataFrame({
|
29 |
+
"x_l_m": x_l.ravel(),
|
30 |
+
"y_l_m": y_l.ravel(),
|
31 |
+
"m_flg": flg.ravel(),
|
32 |
+
})
|
33 |
+
return df
|
34 |
+
|
35 |
+
|
36 |
+
def rgba2df(img):
|
37 |
+
h, w, _ = img.shape
|
38 |
+
x_l, y_l = np.meshgrid(np.arange(h), np.arange(w), indexing='ij')
|
39 |
+
r, g, b, a = img[:,:,0], img[:,:,1], img[:,:,2], img[:,:,3]
|
40 |
+
df = pd.DataFrame({
|
41 |
+
"x_l": x_l.ravel(),
|
42 |
+
"y_l": y_l.ravel(),
|
43 |
+
"r": r.ravel(),
|
44 |
+
"g": g.ravel(),
|
45 |
+
"b": b.ravel(),
|
46 |
+
"a": a.ravel()
|
47 |
+
})
|
48 |
+
return df
|
49 |
+
|
50 |
+
def hsv2df(img):
|
51 |
+
x_l, y_l = np.meshgrid(np.arange(img.shape[0]), np.arange(img.shape[1]), indexing='ij')
|
52 |
+
h, s, v = np.transpose(img, (2, 0, 1))
|
53 |
+
df = pd.DataFrame({'x_l': x_l.flatten(), 'y_l': y_l.flatten(), 'h': h.flatten(), 's': s.flatten(), 'v': v.flatten()})
|
54 |
+
return df
|
55 |
+
|
56 |
+
def df2rgba(img_df):
|
57 |
+
r_img = img_df.pivot_table(index="x_l", columns="y_l",values= "r").reset_index(drop=True).values
|
58 |
+
g_img = img_df.pivot_table(index="x_l", columns="y_l",values= "g").reset_index(drop=True).values
|
59 |
+
b_img = img_df.pivot_table(index="x_l", columns="y_l",values= "b").reset_index(drop=True).values
|
60 |
+
a_img = img_df.pivot_table(index="x_l", columns="y_l",values= "a").reset_index(drop=True).values
|
61 |
+
df_img = np.stack([r_img, g_img, b_img, a_img], 2).astype(np.uint8)
|
62 |
+
return df_img
|
63 |
+
|
64 |
+
def df2bgra(img_df):
|
65 |
+
r_img = img_df.pivot_table(index="x_l", columns="y_l",values= "r").reset_index(drop=True).values
|
66 |
+
g_img = img_df.pivot_table(index="x_l", columns="y_l",values= "g").reset_index(drop=True).values
|
67 |
+
b_img = img_df.pivot_table(index="x_l", columns="y_l",values= "b").reset_index(drop=True).values
|
68 |
+
a_img = img_df.pivot_table(index="x_l", columns="y_l",values= "a").reset_index(drop=True).values
|
69 |
+
df_img = np.stack([b_img, g_img, r_img, a_img], 2).astype(np.uint8)
|
70 |
+
return df_img
|
71 |
+
|
72 |
+
def df2rgb(img_df):
|
73 |
+
r_img = img_df.pivot_table(index="x_l", columns="y_l",values= "r").reset_index(drop=True).values
|
74 |
+
g_img = img_df.pivot_table(index="x_l", columns="y_l",values= "g").reset_index(drop=True).values
|
75 |
+
b_img = img_df.pivot_table(index="x_l", columns="y_l",values= "b").reset_index(drop=True).values
|
76 |
+
df_img = np.stack([r_img, g_img, b_img], 2).astype(np.uint8)
|
77 |
+
return df_img
|
78 |
+
|
79 |
+
def pil2cv(image):
|
80 |
+
new_image = np.array(image, dtype=np.uint8)
|
81 |
+
if new_image.ndim == 2:
|
82 |
+
pass
|
83 |
+
elif new_image.shape[2] == 3:
|
84 |
+
new_image = new_image[:, :, ::-1]
|
85 |
+
elif new_image.shape[2] == 4:
|
86 |
+
new_image = new_image[:, :, [2, 1, 0, 3]]
|
87 |
+
return new_image
|
88 |
+
|
89 |
+
def cv2pil(image):
|
90 |
+
new_image = image.copy()
|
91 |
+
if new_image.ndim == 2:
|
92 |
+
pass
|
93 |
+
elif new_image.shape[2] == 3:
|
94 |
+
new_image = new_image[:, :, ::-1]
|
95 |
+
elif new_image.shape[2] == 4:
|
96 |
+
new_image = new_image[:, :, [2, 1, 0, 3]]
|
97 |
+
new_image = Image.fromarray(new_image)
|
98 |
+
return new_image
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
output/output.txt
ADDED
File without changes
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
opencv-python==4.7.0.68
|
2 |
+
pandas==1.5.3
|
3 |
+
gradio==3.16.2
|
4 |
+
scikit-learn==1.2.1
|
5 |
+
scikit-image==0.19.3
|
6 |
+
Pillow==9.4.0
|
7 |
+
tqdm==4.63.0
|
8 |
+
diffusers==0.27.2
|
9 |
+
gradio==3.16.2
|
10 |
+
gradio_client==0.2.5
|
11 |
+
|
sd_model.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
2 |
+
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, AutoencoderKL
|
3 |
+
import torch
|
4 |
+
|
5 |
+
device = "cuda"
|
6 |
+
|
7 |
+
def get_cn_pipeline():
|
8 |
+
controlnets = [
|
9 |
+
ControlNetModel.from_pretrained("./controlnet/lineart", torch_dtype=torch.float16, use_safetensors=True),
|
10 |
+
ControlNetModel.from_pretrained("mattyamonaca/controlnet_line2line_xl", torch_dtype=torch.float16)
|
11 |
+
]
|
12 |
+
|
13 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
14 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
15 |
+
"cagliostrolab/animagine-xl-3.1", controlnet=controlnets, vae=vae, torch_dtype=torch.float16
|
16 |
+
)
|
17 |
+
|
18 |
+
pipe.enable_model_cpu_offload()
|
19 |
+
|
20 |
+
#if pipe.safety_checker is not None:
|
21 |
+
# pipe.safety_checker = lambda images, **kwargs: (images, [False])
|
22 |
+
|
23 |
+
#pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
24 |
+
#pipe.to(device)
|
25 |
+
|
26 |
+
return pipe
|
27 |
+
|
28 |
+
def invert_image(img):
|
29 |
+
# 画像を読み込む
|
30 |
+
# 画像をグレースケールに変換(もしもともと白黒でない場合)
|
31 |
+
img = img.convert('L')
|
32 |
+
# 画像の各ピクセルを反転
|
33 |
+
inverted_img = img.point(lambda p: 255 - p)
|
34 |
+
# 反転した画像を保存
|
35 |
+
return inverted_img
|
36 |
+
|
37 |
+
|
38 |
+
def get_cn_detector(image):
|
39 |
+
#lineart_anime = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")
|
40 |
+
#canny = CannyDetector()
|
41 |
+
#lineart_anime_img = lineart_anime(image)
|
42 |
+
#canny_img = canny(image)
|
43 |
+
#canny_img = canny_img.resize((lineart_anime(image).width, lineart_anime(image).height))
|
44 |
+
re_image = invert_image(image)
|
45 |
+
|
46 |
+
|
47 |
+
detectors = [re_image, image]
|
48 |
+
print(detectors)
|
49 |
+
return detectors
|
50 |
+
|
51 |
+
def generate(pipe, detectors, prompt, negative_prompt):
|
52 |
+
default_pos = "1girl, bestquality, 4K, ((white background)), no background"
|
53 |
+
default_neg = "shadow, (worst quality, low quality:1.2), (lowres:1.2), (bad anatomy:1.2), (greyscale, monochrome:1.4)"
|
54 |
+
prompt = default_pos + prompt
|
55 |
+
negative_prompt = default_neg + negative_prompt
|
56 |
+
print(type(pipe))
|
57 |
+
image = pipe(
|
58 |
+
prompt=prompt,
|
59 |
+
negative_prompt = negative_prompt,
|
60 |
+
image=detectors,
|
61 |
+
num_inference_steps=50,
|
62 |
+
controlnet_conditioning_scale=[1.0, 0.2],
|
63 |
+
).images[0]
|
64 |
+
return image
|
starline.py
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image, ImageFilter
|
2 |
+
from collections import defaultdict
|
3 |
+
from skimage import color as sk_color
|
4 |
+
from PIL import Image
|
5 |
+
from tqdm import tqdm
|
6 |
+
from skimage.color import deltaE_ciede2000, rgb2lab
|
7 |
+
import cv2
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
|
11 |
+
def replace_color(image, color_1, color_2, alpha_np):
|
12 |
+
# 画像データを配列に変換
|
13 |
+
data = np.array(image)
|
14 |
+
|
15 |
+
# RGBAモードの画像であるため、形状変更時に4チャネルを考慮
|
16 |
+
original_shape = data.shape
|
17 |
+
data = data.reshape(-1, 4) # RGBAのため、4チャネルでフラット化
|
18 |
+
|
19 |
+
# color_1のマッチングを検索する際にはRGB値のみを比較
|
20 |
+
matches = np.all(data[:, :3] == color_1, axis=1)
|
21 |
+
|
22 |
+
# 変更を追跡するためのフラグ
|
23 |
+
nochange_count = 0
|
24 |
+
idx = 0
|
25 |
+
|
26 |
+
while np.any(matches):
|
27 |
+
idx += 1
|
28 |
+
new_matches = np.zeros_like(matches)
|
29 |
+
match_num = np.sum(matches)
|
30 |
+
for i in tqdm(range(len(data))):
|
31 |
+
if matches[i]:
|
32 |
+
x, y = divmod(i, original_shape[1])
|
33 |
+
neighbors = [
|
34 |
+
(x-1, y), (x+1, y), (x, y-1), (x, y+1) # 上下左右
|
35 |
+
]
|
36 |
+
replacement_found = False
|
37 |
+
for nx, ny in neighbors:
|
38 |
+
if 0 <= nx < original_shape[0] and 0 <= ny < original_shape[1]:
|
39 |
+
ni = nx * original_shape[1] + ny
|
40 |
+
# RGBのみ比較し、アルファは無視
|
41 |
+
if not np.all(data[ni, :3] == color_1, axis=0) and not np.all(data[ni, :3] == color_2, axis=0):
|
42 |
+
data[i, :3] = data[ni, :3] # RGB値のみ更新
|
43 |
+
replacement_found = True
|
44 |
+
continue
|
45 |
+
if not replacement_found:
|
46 |
+
new_matches[i] = True
|
47 |
+
matches = new_matches
|
48 |
+
if match_num == np.sum(matches):
|
49 |
+
nochange_count += 1
|
50 |
+
if nochange_count > 5:
|
51 |
+
break
|
52 |
+
|
53 |
+
# 最終的な画像をPIL形式で返す
|
54 |
+
data = data.reshape(original_shape)
|
55 |
+
data[:, :, 3] = 255 - alpha_np
|
56 |
+
return Image.fromarray(data, 'RGBA')
|
57 |
+
|
58 |
+
def recolor_lineart_and_composite(lineart_image, base_image, new_color, alpha_th):
|
59 |
+
"""
|
60 |
+
Recolor an RGBA lineart image to a single new color while preserving alpha, and composite it over a base image.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
lineart_image (PIL.Image): The lineart image with RGBA channels.
|
64 |
+
base_image (PIL.Image): The base image to composite onto.
|
65 |
+
new_color (tuple): The new RGB color for the lineart (e.g., (255, 0, 0) for red).
|
66 |
+
|
67 |
+
Returns:
|
68 |
+
PIL.Image: The composited image with the recolored lineart on top.
|
69 |
+
"""
|
70 |
+
# Ensure images are in RGBA mode
|
71 |
+
if lineart_image.mode != 'RGBA':
|
72 |
+
lineart_image = lineart_image.convert('RGBA')
|
73 |
+
if base_image.mode != 'RGBA':
|
74 |
+
base_image = base_image.convert('RGBA')
|
75 |
+
|
76 |
+
# Extract the alpha channel from the lineart image
|
77 |
+
r, g, b, alpha = lineart_image.split()
|
78 |
+
|
79 |
+
alpha_np = np.array(alpha)
|
80 |
+
alpha_np[alpha_np < alpha_th] = 0
|
81 |
+
alpha_np[alpha_np >= alpha_th] = 255
|
82 |
+
|
83 |
+
new_alpha = Image.fromarray(alpha_np)
|
84 |
+
|
85 |
+
# Create a new image using the new color and the alpha channel from the original lineart
|
86 |
+
new_lineart_image = Image.merge('RGBA', (
|
87 |
+
Image.new('L', lineart_image.size, int(new_color[0])),
|
88 |
+
Image.new('L', lineart_image.size, int(new_color[1])),
|
89 |
+
Image.new('L', lineart_image.size, int(new_color[2])),
|
90 |
+
new_alpha
|
91 |
+
))
|
92 |
+
|
93 |
+
# Composite the new lineart image over the base image
|
94 |
+
composite_image = Image.alpha_composite(base_image, new_lineart_image)
|
95 |
+
|
96 |
+
return composite_image, alpha_np
|
97 |
+
|
98 |
+
|
99 |
+
def thicken_and_recolor_lines(base_image, lineart, thickness=3, new_color=(0, 0, 0)):
|
100 |
+
"""
|
101 |
+
Thicken the lines of a lineart image, recolor them, and composite onto another image,
|
102 |
+
while preserving the transparency of the original lineart.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
base_image (PIL.Image): The base image to composite onto.
|
106 |
+
lineart (PIL.Image): The lineart image with transparent background.
|
107 |
+
thickness (int): The desired thickness of the lines.
|
108 |
+
new_color (tuple): The new color to apply to the lines (R, G, B).
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
PIL.Image: The image with the recolored and thickened lineart composited on top.
|
112 |
+
"""
|
113 |
+
# Ensure both images are in RGBA format
|
114 |
+
if base_image.mode != 'RGBA':
|
115 |
+
base_image = base_image.convert('RGBA')
|
116 |
+
if lineart.mode != 'RGB':
|
117 |
+
lineart = lineart.convert('RGBA')
|
118 |
+
|
119 |
+
# Convert the lineart image to OpenCV format
|
120 |
+
lineart_cv = np.array(lineart)
|
121 |
+
|
122 |
+
white_pixels = np.sum(lineart_cv == 255)
|
123 |
+
black_pixels = np.sum(lineart_cv == 0)
|
124 |
+
|
125 |
+
|
126 |
+
lineart_gray = cv2.cvtColor(lineart_cv, cv2.COLOR_RGBA2GRAY)
|
127 |
+
|
128 |
+
if white_pixels > black_pixels:
|
129 |
+
lineart_gray = cv2.bitwise_not(lineart_gray)
|
130 |
+
|
131 |
+
|
132 |
+
# Thicken the lines using OpenCV
|
133 |
+
kernel = np.ones((thickness, thickness), np.uint8)
|
134 |
+
lineart_thickened = cv2.dilate(lineart_gray, kernel, iterations=1)
|
135 |
+
lineart_thickened = cv2.bitwise_not(lineart_thickened)
|
136 |
+
# Create a new RGBA image for the recolored lineart
|
137 |
+
lineart_recolored = np.zeros_like(lineart_cv)
|
138 |
+
lineart_recolored[:, :, :3] = new_color # Set new RGB color
|
139 |
+
|
140 |
+
lineart_recolored[:, :, 3] = np.where(lineart_thickened < 250, 255, 0) # Blend alpha with thickened lines
|
141 |
+
|
142 |
+
# Convert back to PIL Image
|
143 |
+
lineart_recolored_pil = Image.fromarray(lineart_recolored, 'RGBA')
|
144 |
+
|
145 |
+
# Composite the thickened and recolored lineart onto the base image
|
146 |
+
combined_image = Image.alpha_composite(base_image, lineart_recolored_pil)
|
147 |
+
|
148 |
+
|
149 |
+
return combined_image
|
150 |
+
|
151 |
+
|
152 |
+
|
153 |
+
def generate_distant_colors(consolidated_colors, distance_threshold):
|
154 |
+
"""
|
155 |
+
Generate new RGB colors that are at least 'distance_threshold' CIEDE2000 units away from given colors.
|
156 |
+
|
157 |
+
Args:
|
158 |
+
consolidated_colors (list of tuples): List of ((R, G, B), count) tuples.
|
159 |
+
distance_threshold (float): The minimum CIEDE2000 distance from the given colors.
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
list of tuples: List of new RGB colors that meet the distance requirement.
|
163 |
+
"""
|
164 |
+
#new_colors = []
|
165 |
+
# Convert the consolidated colors to LAB
|
166 |
+
consolidated_lab = [rgb2lab(np.array([color], dtype=np.float32) / 255.0).reshape(3) for color, _ in consolidated_colors]
|
167 |
+
|
168 |
+
# Try to find a distant color
|
169 |
+
max_attempts = 10000
|
170 |
+
for _ in range(max_attempts):
|
171 |
+
# Generate a random color in RGB and convert to LAB
|
172 |
+
random_rgb = np.random.randint(0, 256, size=3)
|
173 |
+
random_lab = rgb2lab(np.array([random_rgb], dtype=np.float32) / 255.0).reshape(3)
|
174 |
+
for base_color_lab in consolidated_lab:
|
175 |
+
# Calculate the CIEDE2000 distance
|
176 |
+
distance = deltaE_ciede2000(base_color_lab, random_lab)
|
177 |
+
if distance <= distance_threshold:
|
178 |
+
break
|
179 |
+
new_color = tuple(random_rgb)
|
180 |
+
break
|
181 |
+
return new_color
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
def consolidate_colors(major_colors, threshold):
|
186 |
+
"""
|
187 |
+
Consolidate similar colors in the major_colors list based on the CIEDE2000 metric.
|
188 |
+
|
189 |
+
Args:
|
190 |
+
major_colors (list of tuples): List of ((R, G, B), count) tuples.
|
191 |
+
threshold (float): Threshold for CIEDE2000 color difference.
|
192 |
+
|
193 |
+
Returns:
|
194 |
+
list of tuples: Consolidated list of ((R, G, B), count) tuples.
|
195 |
+
"""
|
196 |
+
# Convert RGB to LAB
|
197 |
+
colors_lab = [rgb2lab(np.array([[color]], dtype=np.float32)/255.0).reshape(3) for color, _ in major_colors]
|
198 |
+
n = len(colors_lab)
|
199 |
+
|
200 |
+
# Find similar colors and consolidate
|
201 |
+
i = 0
|
202 |
+
while i < n:
|
203 |
+
j = i + 1
|
204 |
+
while j < n:
|
205 |
+
delta_e = deltaE_ciede2000(colors_lab[i], colors_lab[j])
|
206 |
+
if delta_e < threshold:
|
207 |
+
# Compare counts and consolidate to the color with the higher count
|
208 |
+
if major_colors[i][1] >= major_colors[j][1]:
|
209 |
+
major_colors[i] = (major_colors[i][0], major_colors[i][1] + major_colors[j][1])
|
210 |
+
major_colors.pop(j)
|
211 |
+
colors_lab.pop(j)
|
212 |
+
else:
|
213 |
+
major_colors[j] = (major_colors[j][0], major_colors[j][1] + major_colors[i][1])
|
214 |
+
major_colors.pop(i)
|
215 |
+
colors_lab.pop(i)
|
216 |
+
n -= 1
|
217 |
+
continue
|
218 |
+
j += 1
|
219 |
+
i += 1
|
220 |
+
|
221 |
+
return major_colors
|
222 |
+
|
223 |
+
|
224 |
+
|
225 |
+
|
226 |
+
def get_major_colors(image, threshold_percentage=0.01):
|
227 |
+
"""
|
228 |
+
Analyze an image to find the major RGB values based on a threshold percentage.
|
229 |
+
|
230 |
+
Args:
|
231 |
+
image (PIL.Image): The image to analyze.
|
232 |
+
threshold_percentage (float): The percentage threshold to consider a color as major.
|
233 |
+
|
234 |
+
Returns:
|
235 |
+
list of tuples: A list of (color, count) tuples for colors that are more frequent than the threshold.
|
236 |
+
"""
|
237 |
+
# Convert image to RGB if it's not
|
238 |
+
if image.mode != 'RGB':
|
239 |
+
image = image.convert('RGB')
|
240 |
+
|
241 |
+
# Count each color
|
242 |
+
color_count = defaultdict(int)
|
243 |
+
for pixel in image.getdata():
|
244 |
+
color_count[pixel] += 1
|
245 |
+
|
246 |
+
# Total number of pixels
|
247 |
+
total_pixels = image.width * image.height
|
248 |
+
|
249 |
+
# Filter colors to find those above the threshold
|
250 |
+
major_colors = [(color, count) for color, count in color_count.items()
|
251 |
+
if (count / total_pixels) >= threshold_percentage]
|
252 |
+
|
253 |
+
return major_colors
|
254 |
+
|
255 |
+
|
256 |
+
def process(image, lineart, alpha_th):
|
257 |
+
org = image
|
258 |
+
|
259 |
+
major_colors = get_major_colors(image, threshold_percentage=0.05)
|
260 |
+
major_colors = consolidate_colors(major_colors, 10)
|
261 |
+
new_color_1 = generate_distant_colors(major_colors, 100)
|
262 |
+
image = thicken_and_recolor_lines(org, lineart, thickness=5, new_color=new_color_1)
|
263 |
+
major_colors.append((new_color_1, 0))
|
264 |
+
new_color_2 = generate_distant_colors(major_colors, 100)
|
265 |
+
image, alpha_np = recolor_lineart_and_composite(lineart, image, new_color_2, alpha_th)
|
266 |
+
image = replace_color(image, new_color_1, new_color_2, alpha_np)
|
267 |
+
|
268 |
+
return image
|
utils.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import string
|
3 |
+
import os
|
4 |
+
|
5 |
+
import requests
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
|
9 |
+
def randomname(n):
|
10 |
+
randlst = [random.choice(string.ascii_letters + string.digits) for i in range(n)]
|
11 |
+
return ''.join(randlst)
|
12 |
+
|
13 |
+
def load_cn_model(model_dir):
|
14 |
+
folder = model_dir
|
15 |
+
file_name = 'diffusion_pytorch_model.safetensors'
|
16 |
+
url = "https://huggingface.co/kataragi/ControlNet-LineartXL/resolve/main/Katarag_lineartXL-fp16.safetensors"
|
17 |
+
|
18 |
+
file_path = os.path.join(folder, file_name)
|
19 |
+
if not os.path.exists(file_path):
|
20 |
+
response = requests.get(url, stream=True)
|
21 |
+
|
22 |
+
total_size = int(response.headers.get('content-length', 0))
|
23 |
+
with open(file_path, 'wb') as f, tqdm(
|
24 |
+
desc=file_name,
|
25 |
+
total=total_size,
|
26 |
+
unit='iB',
|
27 |
+
unit_scale=True,
|
28 |
+
unit_divisor=1024,
|
29 |
+
) as bar:
|
30 |
+
for data in response.iter_content(chunk_size=1024):
|
31 |
+
size = f.write(data)
|
32 |
+
bar.update(size)
|
33 |
+
|
34 |
+
def load_cn_config(model_dir):
|
35 |
+
folder = model_dir
|
36 |
+
file_name = 'config.json'
|
37 |
+
url = "https://huggingface.co/mattyamonaca/controlnet_line2line_xl/resolve/main/config.json"
|
38 |
+
|
39 |
+
file_path = os.path.join(folder, file_name)
|
40 |
+
if not os.path.exists(file_path):
|
41 |
+
response = requests.get(url, stream=True)
|
42 |
+
|
43 |
+
total_size = int(response.headers.get('content-length', 0))
|
44 |
+
with open(file_path, 'wb') as f, tqdm(
|
45 |
+
desc=file_name,
|
46 |
+
total=total_size,
|
47 |
+
unit='iB',
|
48 |
+
unit_scale=True,
|
49 |
+
unit_divisor=1024,
|
50 |
+
) as bar:
|
51 |
+
for data in response.iter_content(chunk_size=1024):
|
52 |
+
size = f.write(data)
|
53 |
+
bar.update(size)
|